Representation Theory Summary

Riley Moriss
January 11, 2024

I Representations of Finite Groups| 3__Induction & Restriction| 5.3.1 Frobenius Formula . . . . ... ..
(.1 Making New Reps| . . ........... BI Resfricionl. . .. .. ............ [5.4 Alternating Groups| . . . .. ... .....
2 Characters . . . . ... ........... 3.2 Mackey’s Trreducibility] . . . . . ... ...

(1.3 Counting Irreps| . . . . ... ..... ...

.......... A Group Algebral |6 General Representations of Algebras|
ﬂ—s—m eeular Rep - - -« BT Decompof CIG] .« v v oo 6.1 Hiltrations| . . . . . . ... ... ...
B2 Cented . . .. ... ............. [6.2 Finite Dimensionall . . . ... .......

2 Special Cases|

AR 5 TG | 6.3 Characters| . . . .. ... ... .......
. elian Group| . . . ... ... ... ... ymmetric Groups

. Products of Groups| . . . .. ... ..... 5.1~ Young Subgroups| . . . .. ... ... ... o4 Weyl Algebral .. ..............
23 _Semi-DirectProducll . . .. ........ [5.2 Classification of Irreps| . . . .. ... ... 6.5 Tensor Product . .. ............
2.4 Solvable and Sylow Groups|. . . . . .. .. 5.3 Applications|. . . . ... ... 0oL 16.6  Structure of Finite Dimensional Algebras|




Representations of Finite Groups

A representation of a finite group G on a C vector space
V is a group homomorphism

G — Aut(V)

The dimension of V is known as the degree of the represen-
tation.

A morphism of representations, (o1, V) and (o3, V3), is
a linear function ¢ : V| — V, such that

VgeG p2g)d = dpi(g)

A subrepresentation of (p, V) is a vector subspace W <
V such that Vg € G p(g)(W) C W

Recall that for W < V a projection of V — W is a linear
map that restricted to W is the identity.

Lemma. There is a bijection
{projections V.— W} < { compliments of W in V}

sending a projection to its kernel and a decomposition to the
projection.

Lemma. Ifp: G — GL(V)isarep and W <V is a subrep
then there exists a complimentary subrep W' <V such that
V=WeWw.

Note that there is always a complimentary subspace but
it might not be stable under the G action.

A representation is irreducible if it is non-trivial and has
no non-trivial strict subreps.

Theorem. Every representation decomposes into a direct
sum of irreducible reps.

Note that this is not true in general if we consider rep-
resentations on non-C vector spaces, or infinite groups etc.
This property is known as complete reducibility .

Theorem (Schurs Lemma). If (01, V1) and (0>, V>) are ir-
reps and f € Homg(V1,V,) then f = Al for some A € C. In
particular f is either an iso or the zero map.

Making New Reps

Let (0, V), (0", V') be two representaitons of G.

Direct Sum
7T:G->GLVeV)

7(@)(v +V') = p()() + p'(g)(V")
Tensor If V and V’ have a basis {v;}, {v}} respectively then
V ® V' has a basis {v; ® v;.} and we get a new representation

via
7:G->GLVeV)

(@ ®V) = p(g)(v) ® p'(8)(V)
Symmetric and Alternating Square A subcase is where
we want to only use the first representation on V@ V. If we

define
0:VV-o-VeV

VWP WV

Then we can write
VeV =Sym*(V)®AX(V)

where
Sym*(V)={xe VeV :0x) =x}

AN(V)={xeVeV:0x) =—x}

These spaces have respective bases {e;® e +¢e; ®¢;} and
{e;®e; —e; ®e;}. Then these are both subrepresentations on
VeVv.

Dual Rep Given a vector space we can take its linear dual
V* = Home(V,C).

n:G— GL(VY)
(@) =g.f
8-f(v) = f(pg1(v)

Hom Rep
7n: G — GL(Homc(V, V"))

m(@(N) = Py (flpg1 (V)

Characters
The character of a rep (p, V) is the map
Xp=xv:G—C
x(8) = Tr(p(g))
or equally the sum of eigenvalues with multiplicity.
Lemma. The character has the following properties
e x(1) =dimV = degp
o x(g7") = x(g) the complex conjugate
o y(hgh™) = x(g), it is a class function
® Xpapy = Xp T Xp
® Xpgp = Xp " Xp'
* Xo =Xp

® XHom(V,V') = XV " XV’

o xs2v(8) = 3hrv()? + xv(gh)]
o xav(@) = 2hev(@)? — xv(g)]
Lemma.

Homc(V,V)=V*'QV’
as representations.

A function G — C is a class function if Vg,h € G we
have f(hgh™') = f, it is constant on conjugacy classes.

We define the following inner product on classfunction
¢ G—-C

1
)= — > p@ig™)
Gl £4

Theorem.
Oex =1

iff x is an irreducible character.



Lemma. If y,x’ are two non-isomorphic irreducible char-
acters then

</\/’/\/> =0
Lemma. If (o, V) isa G rep and VC are the fixed points then
) 1
dimVv® = — Z,\{p(g)
Gl &2

Theorem. V a rep of G and W; an irrep of G. The number
of W;’s contained in V as subrepresentations is then

Qv xw)

Theorem. Two representatinosn have the same character iff
they are isomorphic.

Counting Irreps

Theorem. The number of irreducible representatinos of G
is the same as the number of conjugacy classes.

If W; are all the irreps of G and they have respective di-
mensions 7; then

Lemma.

2,m =ldl

and
D mw(8)=0 Vg #1

1

Lemma. If g € G we denote c(g) :=
class of g. Then

size of the conjugacy

|G

Z)(i(g))a(g) = @

and for h not in the conjugacy class of g
> xilhxi(g) = 0

Lemma. The degrees of irreps of G divide |G|/|cent(G)|

Theorem. H < G normal subgroup and (p,V) an irrep of
G then either

e p|y is isotypic (has only one irred component)

e OR; dH < K < G and an irrep of K, o, such that
p= Indg o

Lemma. The degrees of irreps of G divide |G|/|A| where A
is any abelian normal subgroup of G.

Canonical Decomposition

Regular Rep

The regular representation of G is the C vector space
spanle, : g € G} with the action that h.e, = e, which
gets extended linearly to the rest of the vector space. This
has the character

Gl, g=1
rG<g>={' "o

0, else
Moreover it decomposes into
di W;
R = @iWi m

where W; runs over all the irreps of G.



Special Cases

Abelian Group

In an abelian group each conjugacy class has exactly one
element.

Theorem. G is abelian iff all irreducible reps have degree
one.

Lemma. If A is an abelian subgroup of G then every irre-

ducible rep of G has degree < %

Products of Groups

Let G1,G, be two groups with respective representations
(o1, V1), (02, V2). We get a representation

P1®p2: G XxGy = GL(V, @ V)

(81, 82) P pi(g1) ® p2(g2)

This has character the product of the two other characters as

before.
Theorem. o [fp; are both irreps then p| ® p; is irrep

o Everyirrep of G1 X G is iso to something of this form.

Semi-Direct Product

Let G = H < A where A is normal and abelian. All iirps
of A are one dimensional, hence they form a group namely
X = Hom(A, C*). There is a G action on X via

gx(a) = x(g"'ag)
Then for each character we get a subgroup of H,
Hl‘ = {h eH: h~Xi =X,‘}

Note that if y; is in the same H orbit as y; then H; = H;. Let
G; = H,; < A the characters of A extend to characters of G;
by just ignoring the H;, y;(ha) = xi(a). Irreps of H; extend
in the same way to irreps of G;. Then if p is such an irrep of
G;

e Ind§ (v; ® p) is irreducible

e Every irrep of G arrises in this way.

Solvable and Sylow Groups

Recall that a solvable group G has a finite derived series i.e.
(I}1<Gy<---<G, =G

such that G;_; < G; normal and G;/G;_; is abelian.

A supersolvable group moreover has that G;/G;_; is
cyclic. Finally a nilpotent group is one that is solvable and
Gi/Gi1 < Cent(Gi/Gi-1).

Lemma. Nilpotent — Supersolvable — Solvable

A p-group is a group whose order is a power of p, for p
prime.

Theorem. Every p-group is nilpotent

Lemma. Ifa p-group G acts on a finite set X then
IX| = 1X°| (mod p)

Lemma. Let V be a non-zero k-vector space, where charac-
teristic of k is p. Let (0, V) be a rep of G. If G is a p-group
then there exists a v € V — {0} that is fixed by p(g) for all
geCGie

VgeG p(gv=v

Theorem. The only irreducible rep of a p-group in charac-
teristic p is the trivial rep.

Recall that for a group G a Sylow-p subgroup is a maxi-
mal p-subgroup.

Theorem. If p is prime and |G| = mp" for some m coprime
to p. Then

o There exists a Sylow p-subgroup (of order n)

o All Sylow-p subgroups are conjugate i.e. For any two
Sylow-p subgroups P, Q there exists a g € G such that

gPg' =0

e FEach p-subgroup of G is contained in a Sylow-p sub-
group

Lemma. G non-abelian and supersolvable then there is a
normal abelian subgroup that is not contained in the center

of G.

Lemma. Every irreducible representation of a supersolv-
able group is induced by a degree one represntation of a
subgroup.



Induction & Restriction

Let H < G a subgroup and R = G/H a collection of rep-
resentatives of cosets. Let W be a C[H] module. We define
the induction of W to G to be the representation

Ind$ W = C[G] ®cimy W
with C[G] action
g.(x®@w)=(gx) 0w
which has the following properties

e dimInd% W = [G : H]dim W

XIndg W(g) = # ZseG,s"gsEHXW(S_lgs)

Indg = Hompy(C[G], W) as representations.

Homy (W, Res% E) = Homg(Ind$, W, E)

V ®c Indy W = Ind$(Resé V @c W)
e If H < K < G then Ind§ Indjy W = Ind§, W

Induction is a functor: If f : H — C is a class function then
Ind$ f : G — C definied by

G _
Indy f(g) = T

D fsTes)

s€G,s~'gseH

is a calss function. Moreover if f is a character of W then

Ind xw = Xnd§ w
Lemma.

dim Homg(V1, V2) = (ev, s xv,)

Lemma.

(W, Res )y = (Ind% v, p)

Lemma. W irrep of H, E irrep of G. Then the number of
times that W appears in Resg E is the number of times E
occurs in Ind% W

Restriction

Let H < G and K < G be two subgroups. We are going to in-
duce one of the subgroups and restrict down to the other. Let
(0, W) be a H rep. Consider the double cosets K \ G/H =
{KgH : g € G} where KgH = {kgh : k € K,h € H}. For
s € Gwedefine H, = sHs™'NnKandp®: H, —» GL(W)
sending x > p(s~'xs).

Theorem.

Res¢ IndS(W) = @ Ind¥ (%)
seK\G/H

S some representatives

Mackey’s Irreducibility

Let H < Gand s € G, we define H, = sHs'nH. If
p: H— GL(W) is arep then so is ResZSp and

o’ Hy —» GL(W)
X p(s’lxs)

Theorem. Indg W is irreducible iff W is irreducible and
VseG-H
(o', Resyy ) =0

Lemma. If H is normal in G then Indg W is irreducible iff
W is irreducible and Vs € G — H p # p*



Group Algebra

We now work with G a finite group and K a commutative
ring of characteristic zero. We make K[G] = spank{g :
g € G} = K9 the formal span of G as a K module into a ring
and therefore a K algebra by defining multiplication as

[Z agg} [Z bhh) = Z agbpgh
geG heG 8,heG

This is called the group algebra
If k is a field, V is a k vector space and p : G — GL(V)
is a rep then V can be made into a left k\[G] module via

2

g€G

v= ) agp(@)v)

geG

If V is a left k[G] module then the following is a rep

g (v gw)

Theorem. In characteristic 0 we have complete reducibil-
ity. Every k[G] module decomposes into the direct sum of
irreducible submodules.

Decomp of C [G]

Consider the irreps of G, (o;, W;).

Theorem.
CIG) = [ | Maimw,(©)

8+ (01(8); -, Pm(8))
extended linearly to all of C[G]
Lemma. Let (uy, ..., un) € [[; End(W) and u = 3, u(8)g
its preimage under the above iso. Then

1

u(g) = Gl

> dim(W)Tr(pi(g™ )

Center
If ¢ is a conjugacy class of G then we denote z. = Y ,c. &-
Lemma. {(z.}. forms a basis of the center of C[G].

Theorem. From the decomposition of C[G] we have ho-
momorphisms (that when collected give an isomorphism)
pi © CI[G] — End(W;) = Matgimw,(C) which restricts to
the center w; = pilcenscicy fori =1, ..., k.

(w;); : cent(C[G]) — C*

Is an isomorphism. Explicitly
D u@xi(e)

w; (Z u(g)g) =
geG
e

dim W;



Symmetric Groups

Conjugacy classes of S, are in bijection with partitions
of n.

Young Subgroups

Fix a tableau ¢, of shape A. Then the young subgroups asso-
ciated are

P =P, ={geS,: gpreserves each row}

Q=0 =1{g €S, : gpreserves each column}

Note that S, acts on the tableux by permuting the numbers.
By preseve the rows / columns we are saying the same num-
bers are in there, we dont care about the order (otherwise
both groups would be trivial).

Lemma. If1 = A;+:--+A4, withtranspose I = p+- - -+
then the young subgroups are

P=§, x---x§,
Q=S8 X XSy,

There are three distinguished elements of C[S ] associ-
ated to the young subgroups

a, = Zeg, b, = Z sgn(gley, ca=ayb,

gepP g€0

Classification of Irreps

Theorem.
Le.

o Some scaler multiple of c, is idempotent

dn, €C, c/z1 =nyc,

e For every A, C[S,]c, is an irreducible representation
of Sy

e Every irreducible representation of S, is given by
CIS ,]c, for some A

We will need several lemmas to prove this result which
we now develop.

First notice that P N Q = {1}, thus Vg € §,, we can write
it in at most one way as g = pq where p € P,g € Q (it

might be not expressable in this form). Applying these to
our distinguished element

Cr= Z Sgn(CI)epq

PqgEPQ

Applications

Lemma. For any A we have that ci =nyc,

n!

"= dGim(CIS ,lcn)

5.3.1 Frobenius Formula

We set up some notation. Let V; = C[S,]c, and y, the asso-
ciated character. We can write a partition multiplicatively

A=A+t Ay Ao Ay

which if we have repeated entries we can collpse to be some-
thing of the form

A =n"(n— 1)+ 1n

so to a tuple of non-negative integers i = (iy, - -
associate a partition 4; above.
Fix a k > the number of rows in A; and let

-, 1,) we can

pj(x):x{+...xj

k

and

AW =[] i-xp

1<i<j<k

Finally if f(x) = f(x1,...,x¢) is a formal power series
and (€1, ..., &) € Z%  then we denote

.....

Theorem.

xa(Cy) =

A [ [ i’

Jj=1

As a corrolory we know that

n!
" 1 hook lengths in A

. n!
dlIIlV,l = f]’—fk' l_[(f, - fj)

i<j
and this is further independent of our choice of k.

Lemma. The dimension of C[S ,]c, is equal to the number
of tableux on A such that the rows and columns are increas-
ing

Alternating Groups

A, < S, is the commutator subgroup of S,, it has index
two. For a general subgroup of index two H < G we have
the permutation representation of G O G/H = {1, r} which
decomposes into a direct sum Cy,, ® Crpp—sriy

Lemma. Let V be an irrep of G, and let W = Resg V where
H < G an index two subgroup. Let V' =V ® C,.p5—ri fOr the
permutation representation. Then one of the following holds

e V 2 V': Then W is irreducible and Ind% W = V & V'’

o V=V':Then W =W &W” for two non-isomorphic
irreps W', W”’. Moreover

V = Ind% W = Ind% W”

(158 - 161 )




General Representations of Algebras

We set k to be an algebraically closed field. A k alge-
bra is a k vector space with a bilinear multiplication. A
left A-module is a k-vector space V with a homomorphism
p A — End,(V), a linear map preserving multiplication
and unit.

A submodule is a subspace U < V such that p(a)U < U
foralla € A.

A non-zero rep V of A is irreducible if its only sub-
representations are V and {0}. It is indecomposable if it can-
not be written as a direct sum of two non-zero sub represen-
tations.

If Vi, V, are reps of A then V| & V; is too via

a(vi + ) = avy +an

A homomorphism is a map ¢ : Vi — V, such that

d(a.v) = a.¢(v).

Theorem (Schur’s Lemma). If V|, V, are A reps and ¢ :
V| — V5 is a non-zero hom then

o [f'Vy isirreducible, then ¢ is injective

o [f'V, isirreducible, then ¢ is surjevtive

o [fVy,V, isirreducible, then ¢ is an isomorphism
moreover if Vi = V, and ¢ is an iso then it acts by a scalar.

Lemma. If A is commutative algebra then every finite dim
rep of A is one dimensional

A left (right) ideal of a k-algebra A is a subspace I < A
that is closed under left (right) multiplication by A. We call
a space that is both a left and right idea a two sided ideal.

An algebra A is simple if 0 and A are its only two sided
ideals.

A representation of an algebra is called faithful if it is
injective.

A rep of A is called semi-simple if it is the direct sum of
irreducible representations.

Lemma. V; finite dimensional irreps of A. If

Wsv=>) v

then for some r; < n;
W @,‘Viri

and there is a morphism of representations ¢ : W — V given
on components V' — V" by multiplying on the right by X;
an r; X n; matrix with linearly independent rows.

Lemma. If V = @, V; where each V; is irreducible and
f 'V = U is surjective then there exists a subset J C I such
that f maps ®;e;V; isomorphically onto U.

Lemma. V irrep of finite dimension and vi,...,v, € V
linearly independent. Then for every other collection
Wi, ..., W, € V there exists an a € A such that for every i

avy = w;

Theorem (Density Theorem). If (o,V) is a finite dimen-
sional irrep of A then p is a surjection.

Given arep of A, V then V* =
A module via

Homy(V, k) is a right

(f.a)v) = f(a.v)

Lemma. If A = []; Mat, (k) then the irreps of A are V| =
k4, ...V, = k%, moreover any finite dimensional rep of A is
isomorphic to ®V;"

Filtrations

A finite filtration of V is a sequence of subreps 0 = V, <
Vi<oo<V,=V

Lemma. Every finite dimensional rep V of A admits a finite
filtration such that V;/V;_y is irreducible for all i.

Such a filtration is called a composition series.

Theorem. Any two composition series of V are the same
length and the quotients are isomorphic (up to reordering).

The collection of irreps {V;/V;_
the Jordan-Holder series of V.

:i=1,..,n}is called

Theorem (Krull-Schmidt). Any finite dimensional rep V of
A can be uniqueqly decomposed into a direct sum of inde-
composable subreps

Lemma. If Wis a finite dimensional indecomposable rep of
A then a hom W — W is either nilpotent or an isomorphism.
Moreover the sum of nilpotent maps is nilpotent.

If6: W — Wis a homomorphism of A reps then for
Aekwehave Wy ={we W: (- A)"w = 0 some n}, this is
the generalised eigenspace.

Finite Dimensional

Let A be a finite dimensional k algebra. The radical of A is
the set

Rad(A) ={a€ A :aV; == VV;irreducible reps}
Lemma. Rad(A) is a two sided ideal.

Lemma. Let I be a nilpotent two sided ideal, then it is con-
tained in the radical. Moreover the radical is the largest
nilpotent two sided ideal.

Theorem. A has only finitely many irreps up to isomor-
phism. Moreover

A/Rad(A) = | | Endy(V;)

where V; are the irreps of A.

Lemma. For the irreps of A, V; we have that

Z(dim V)? < dimA

A finite dimensional algebra is semisimple if its radical
is zero.

Theorem. For a finite dimensional algebra A the following
are equivilent

e A is semisimple
¥(dim V;)> = dim A
A = []; Maty,(k)

Every finite dim rep of A is completely reducible

Every subrep of a finite dim rep of A admits a comple-
mentary subrep.

A is completely reducible as an A module.



Characters
Characters are defined in the same way.
Lemma. Characters of irreps of A are linearly independent.

Lemma. If A is finite dimensional semisimple algebra then
the characters form a basis of (A/[A, A])*

Weyl Algebra

The Weyl algebra is
klx, y1/{yx — xy = 1)
Theorem. The Weyl algebra has a basis {x'y/ : i, j > 0}

Tensor Product

If A, B are k-algebras then we can make the tensor
A® B
with the multiplication
(@®b)(a®pB) =aa®bB

If Vis arep of A and W is arep of B then V ®; W is a rep
of A ®; B via the action

(a@a®b)(vew)=avQbw

Lemma. Virrep of A, Wirrep of B then V. ® W is irrep of
A ® B. Moreover every irrep of A ® B is of this form.

Theorem. A, B subalgebras of End(E), where E is a finite
dimensional k-vector space, such that A is semisimple and
B = Ends(E). Then

o A= FEndg(E)
e Bis semi-simple

e Asarep of A® B E decomposes as a direct sum over
the tensor of irreps of A and B

EZ@V,‘@VV,'

for some ordering on the irreps of A and B.

Structure of Finite Dimensional
Algebras

Let A be a k-algebra and I < A a nilpotent two sided ideal.
Recall that an element of an algebra is called idempotent
when e? = e.

Lemma. Let e € A/I be idempotent then there exists idem-
potent f € A such that n(f) = e, moreover this lift is unique
up to conjagacy by an element of 1 + I.

A complete system of orthogonal idempotents in a k-
algebra A is a collection of idempotents ey, ...,e,, € A such
that e;e; =0 foreachi # jande; +---+ ¢, = 1.

Lemma. Ifey,..., e, is a complete system of idempotents of
A/I then there exists a complete system of idempotents in A,

fis eees frn sSuch that n(f;) = e;.

Theorem. If P, M,N are representaitons of A (Left A mod-
ules) then the following are equivilent

e I[fa: M — N is a surjection and P — N then there
existsau: P — M suchthat @ ou =v.

M %‘1) N
)-(\
|
\\\
P

e [fa : M — N is a surjection then there exists a
u:P — Msuchthat @ ou = id i.e. a splits.

o There exists an A module Q such that P & Q is a free
A module

o The functor Homu (P, —) is exact

A module satisfying one of the above conditions is called
projective.

Theorem. A finite dimensional with irreps My, ..., M, we
have

e For each i = 1,...,n there exists a unique indecom-
posable finitely generated projective A module P; such
that dimHomA(Pi,Mj) = 6,‘]‘

o A= @,‘PdimMi

i

e Any indecomposable finitely generated projective A
module is isomorphic to P; for some i

The P; is called the projective cover of M;.

Lemma. If N is a finite dimensional rep of A then
dimHomy(P;, N) = [N : M;] which is the multiplicity of
the occurence of M; in the Jordan-Holder series.
If A has irreps M; with projective covers P; then the ma-
trix
Cij = dimHomA(Pi,Pj) = [PJ : M,]

is called the Cartan matrix of A.
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