Representation Theory Summary

Riley Moriss
January 11, 2024

1 Representations of Finite Groups
1.1 Making New Reps
1.2 Characters
1.3 Counting Irreps
1.4 Canonical Decomposition
1.5 Regular Rep
$2 \quad$ Special Cases
2.1 Abelian Group
2.2 Products of Groups
2.3 Semi-Direct Product
2.4 Solvable and Sylow Groups

3 Induction \& Restriction
3.1 Restriction
3.2 Mackey's Irreducibility

4 Group Algebra
$4.1 \quad$ Decomp of \mathbb{C} [G]
4.2 Center

5 Symmetric Groups
5.1 Young Subgroups
5.2 Classification of Irreps
5.3 Applications
5.3.1 Frobenius Formula
5.4 Alternating Groups

6 General Representations of Algebras
6.1 Filtrations
6.2 Finite Dimensional
6.3 Characters.
6.4 Weyl Algebra
6.5 Tensor Product
6.6 Structure of Finite Dimensional Algebras

Representations of Finite Groups

A representation of a finite group G on a \mathbb{C} vector space V is a group homomorphism

$$
G \rightarrow A u t(V)
$$

The dimension of V is known as the degree of the representation.

A morphism of representations, $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$, is a linear function $\phi: V_{1} \rightarrow V_{2}$ such that

$$
\forall g \in G \quad \rho_{2}(g) \phi=\phi \rho_{1}(g)
$$

A subrepresentation of (ρ, V) is a vector subspace $W \leq$ V such that $\forall g \in G \rho(g)(W) \subseteq W$

Recall that for $W \leq V$ a projection of $V \rightarrow W$ is a linear map that restricted to W is the identity.

Lemma. There is a bijection

$$
\{\text { projections } V \rightarrow W\} \leftrightarrow\{\text { compliments of } W \text { in } V\}
$$

sending a projection to its kernel and a decomposition to the projection.

Lemma. If $\rho: G \rightarrow G L(V)$ is a rep and $W \leq V$ is a subrep then there exists a complimentary subrep $W^{\prime} \leq V$ such that $V=W \oplus W^{\prime}$.

Note that there is always a complimentary subspace but it might not be stable under the G action.

A representation is irreducible if it is non-trivial and has no non-trivial strict subreps.

Theorem. Every representation decomposes into a direct sum of irreducible reps.

Note that this is not true in general if we consider representations on non-C vector spaces, or infinite groups etc. This property is known as complete reducibility.

Theorem (Schurs Lemma). If $\left(\rho_{1}, V_{1}\right)$ and $\left(\rho_{2}, V_{2}\right)$ are irreps and $f \in \operatorname{Hom}_{G}\left(V_{1}, V_{2}\right)$ then $f=\lambda I$ for some $\lambda \in \mathbb{C}$. In particular f is either an iso or the zero map.

Making New Reps

Let $(\rho, V),\left(\rho^{\prime}, V^{\prime}\right)$ be two representaitons of G .

Direct Sum

$\tau: G \rightarrow G L\left(V \oplus V^{\prime}\right)$

$$
\tau(g)\left(v+v^{\prime}\right)=\rho(g)(v)+\rho^{\prime}(g)\left(v^{\prime}\right)
$$

Tensor If V and V^{\prime} have a basis $\left\{v_{i}\right\},\left\{v_{i}^{\prime}\right\}$ respectively then $V \otimes V^{\prime}$ has a basis $\left\{v_{i} \otimes v_{j}^{\prime}\right\}$ and we get a new representation via

$$
\tau: G \rightarrow G L\left(V \otimes V^{\prime}\right)
$$

$$
\tau(g)\left(v \otimes v^{\prime}\right)=\rho(g)(v) \otimes \rho^{\prime}(g)\left(v^{\prime}\right)
$$

Symmetric and Alternating Square A subcase is where we want to only use the first representation on $V \otimes V$. If we define

$$
\begin{gathered}
\theta: V \otimes V \rightarrow V \otimes V \\
v \otimes w \mapsto w \otimes v
\end{gathered}
$$

Then we can write

$$
V \otimes V=S y m^{2}(V) \oplus \Lambda^{2}(V)
$$

where

$$
\begin{gathered}
S y m^{2}(V)=\{x \in V \otimes V: \theta(x)=x\} \\
\Lambda^{2}(V)=\{x \in V \otimes V: \theta(x)=-x\}
\end{gathered}
$$

These spaces have respective bases $\left\{e_{i} \otimes e_{j}+e_{j} \otimes e_{i}\right\}$ and $\left\{e_{i} \otimes e_{j}-e_{j} \otimes e_{i}\right\}$. Then these are both subrepresentations on $V \otimes V$.

Dual Rep Given a vector space we can take its linear dual $V^{*}=\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$.

$$
\begin{gathered}
\pi: G \rightarrow G L\left(V^{*}\right) \\
\pi(g)(f)=g \cdot f \\
g \cdot f(v)=f\left(\rho_{g^{-1}}(v)\right)
\end{gathered}
$$

Hom Rep

$\pi: G \rightarrow G L\left(\operatorname{Hom}_{\mathbb{C}}\left(V, V^{\prime}\right)\right)$
$\pi(g)(f)(v)=\rho_{g}^{\prime}\left(f\left(\rho_{g^{-1}}(v)\right)\right)$

Characters

The character of a rep (ρ, V) is the map

$$
\begin{gathered}
\chi_{\rho}=\chi_{V}: G \rightarrow \mathbb{C} \\
\chi(g)=\operatorname{Tr}(\rho(g))
\end{gathered}
$$

or equally the sum of eigenvalues with multiplicity.
Lemma. The character has the following properties

- $\chi(1)=\operatorname{dim} V=\operatorname{deg} \rho$
- $\chi\left(g^{-1}\right)=\overline{\chi(g)}$ the complex conjugate
- $\chi\left(h g h^{-1}\right)=\chi(g)$, it is a class function
- $\chi_{\rho \oplus \rho^{\prime}}=\chi_{\rho}+\chi_{\rho^{\prime}}$
- $\chi_{\rho \otimes \rho^{\prime}}=\chi_{\rho} \cdot \chi_{\rho^{\prime}}$
- $\chi_{\rho^{*}}=\overline{\chi_{\rho}}$
- $\chi_{H o m\left(V, V^{\prime}\right)}=\overline{\chi_{V}} \cdot \chi_{V^{\prime}}$
- $\chi_{S^{2} V}(g)=\frac{1}{2}\left[\chi_{V}(g)^{2}+\chi_{V}\left(g^{2}\right)\right]$
- $\chi_{\wedge^{2} V}(g)=\frac{1}{2}\left[\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)\right]$

Lemma.

$$
\operatorname{Hom}_{\mathbb{C}}\left(V, V^{\prime}\right) \cong V^{*} \otimes V^{\prime}
$$

as representations.
A function $G \rightarrow \mathbb{C}$ is a class function if $\forall g, h \in G$ we have $f\left(h g h^{-1}\right)=f$, it is constant on conjugacy classes.

We define the following inner product on classfunction $\phi, \psi:: G \rightarrow \mathbb{C}$

$$
\langle\phi, \psi\rangle=\frac{1}{|G|} \sum_{g \in G} \phi(g) \psi\left(g^{-1}\right)
$$

Theorem.

$$
\langle\chi, \chi\rangle=1
$$

iff χ is an irreducible character.

Lemma. If χ, χ^{\prime} are two non-isomorphic irreducible characters then

$$
\left\langle\chi, \chi^{\prime}\right\rangle=0
$$

Lemma. If (ρ, V) is a G rep and V^{G} are the fixed points then

$$
\operatorname{dim} V^{G}=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g)
$$

Theorem. V a rep of G and W_{i} an irrep of G. The number of W_{i} 's contained in V as subrepresentations is then

$$
\left\langle\chi_{V}, \chi_{W_{i}}\right\rangle
$$

Theorem. Two representatinosn have the same character iff they are isomorphic.

Counting Irreps

Theorem. The number of irreducible representatinos of G is the same as the number of conjugacy classes.

If W_{i} are all the irreps of G and they have respective dimensions n_{i} then

Lemma.

and

Lemma. If $g \in G$ we denote $c(g):=$ size of the conjugacy
class of g. Then

$$
\sum_{i} \chi_{i}(g) \overline{\chi_{i}(g)}=\frac{|G|}{c(g)}
$$

and for h not in the conjugacy class of g

$$
\sum_{i} \chi_{i}(h) \overline{\chi_{i}(g)}=0
$$

Lemma. The degrees of irreps of G divide $|G| /|\operatorname{cent}(G)|$
Theorem. $H \leq G$ normal subgroup and (ρ, V) an irrep of G then either

- $\left.\rho\right|_{H}$ is isotypic (has only one irred component)
- OR; $\exists H \leq K<G$ and an irrep of K, σ, such that $\rho=\operatorname{Ind}_{K}^{G} \sigma$

Lemma. The degrees of irreps of G divide $|G| /|A|$ where A is any abelian normal subgroup of G.

Canonical Decomposition

Ignoring

Regular Rep

The regular representation of G is the \mathbb{C} vector space $\operatorname{span}\left\{e_{g}: g \in G\right\}$ with the action that h.e $e_{g}=e_{h g}$ which gets extended linearly to the rest of the vector space. This has the character

$$
r_{G}(g)= \begin{cases}|G|, & g=1 \\ 0, & \text { else }\end{cases}
$$

Moreover it decomposes into

$$
R_{G}=\oplus_{i} W_{i}^{\operatorname{dim} W_{i}}
$$

where W_{i} runs over all the irreps of G.

Special Cases

Abelian Group
In an abelian group each conjugacy class has exactly one element.

Theorem. G is abelian iff all irreducible reps have degree one.

Lemma. If A is an abelian subgroup of G then every irreducible rep of G has degree $\leq \frac{|G|}{|A|}$

Products of Groups

Let G_{1}, G_{2} be two groups with respective representations $\left(\rho_{1}, V_{1}\right),\left(\rho_{2}, V_{2}\right)$. We get a representation

$$
\begin{gathered}
\rho_{1} \otimes \rho_{2}: G_{1} \times G_{2} \rightarrow G L\left(V_{1} \otimes V_{2}\right) \\
\left(g_{1}, g_{2}\right) \mapsto \rho_{1}\left(g_{1}\right) \otimes \rho_{2}\left(g_{2}\right)
\end{gathered}
$$

This has character the product of the two other characters as before.
Theorem. - If ρ_{i} are both irreps then $\rho_{1} \otimes \rho_{2}$ is irrep

- Every irrep of $G_{1} \times G_{2}$ is iso to something of this form.

Semi-Direct Product

Let $G=H \ltimes A$ where A is normal and abelian. All iirps of A are one dimensional, hence they form a group namely $X=\operatorname{Hom}\left(A, \mathbb{C}^{*}\right)$. There is a G action on X via

$$
g \cdot \chi(a)=\chi\left(g^{-1} a g\right)
$$

Then for each character we get a subgroup of H ,

$$
H_{i}:=\left\{h \in H: h \cdot \chi_{i}=\chi_{i}\right\}
$$

Note that if χ_{i} is in the same H orbit as χ_{j} then $H_{i}=H_{j}$. Let $G_{i}=H_{i} \ltimes A$ the characters of A extend to characters of G_{i} by just ignoring the $H_{i}, \chi_{i}(h a)=\chi_{i}(a)$. Irreps of H_{i} extend in the same way to irreps of G_{i}. Then if ρ is such an irrep of G_{i}

- $\operatorname{Ind}_{G_{i}}^{G}\left(\chi_{i} \otimes \rho\right)$ is irreducible
- Every irrep of G arrises in this way

Solvable and Sylow Groups
Recall that a solvable group G has a finite derived series i.e.

$$
\{1\} \leq G_{0} \leq \cdots \leq G_{n}=G
$$

such that $G_{i-1} \leq G_{i}$ normal and G_{i} / G_{i-1} is abelian.
A supersolvable group moreover has that G_{i} / G_{i-1} is cyclic. Finally a nilpotent group is one that is solvable and $G_{i} / G_{i-1} \leq \operatorname{Cent}\left(G_{i} / G_{i-1}\right)$.

Lemma. Nilpotent \Longrightarrow Supersolvable \Longrightarrow Solvable
A p-group is a group whose order is a power of p , for p prime.

Theorem. Every p-group is nilpotent
Lemma. If a p-group G acts on a finite set X then

$$
|X| \equiv\left|X^{G}\right|(\bmod p)
$$

Lemma. Let V be a non-zero k-vector space, where characteristic of k is p. Let (ρ, V) be a rep of G. If G is a p-group then there exists a $v \in V-\{0\}$ that is fixed by $\rho(\mathrm{g})$ for all $g \in G$ i.e.

$$
\forall g \in G \quad \rho(g) v=v
$$

Theorem. The only irreducible rep of a p-group in characteristic p is the trivial rep.

Recall that for a group G a Sylow-p subgroup is a maximal p-subgroup.

Theorem. If p is prime and $|G|=m p^{n}$ for some m coprime to p. Then

- There exists a Sylow p-subgroup (of order n)
- All Sylow-p subgroups are conjugate i.e. For any two Sylow-p subgroups P, Q there exists a $g \in G$ such that

$$
g P^{-1}=Q
$$

- Each p-subgroup of G is contained in a Sylow-p subgroup

Lemma. G non-abelian and supersolvable then there is a normal abelian subgroup that is not contained in the center of G.

Lemma. Every irreducible representation of a supersolvable group is induced by a degree one represntation of a subgroup.

Induction \& Restriction

Let $H \leq G$ a subgroup and $R=G / H$ a collection of representatives of cosets. Let W be a $\mathbb{C}[H]$ module. We define the induction of W to G to be the representation

$$
\operatorname{Ind}_{H}^{G} W=\mathbb{C}[G] \otimes_{\mathbb{C}[H]} W
$$

with $\mathbb{C}[G]$ action

$$
g .(x \otimes w)=(g x) \otimes w
$$

which has the following properties

- $\operatorname{dim} \operatorname{Ind}_{H}^{G} W=[G: H] \operatorname{dim} W$
- $\chi_{\operatorname{Ind}_{H}^{G} W}(g)=\frac{1}{|H|} \sum_{s \in G, s^{-1} g s \in H} \chi_{W}\left(s^{-1} g s\right)$
- $\operatorname{Ind}_{H}^{G} \cong \operatorname{Hom}_{H}(\mathbb{C}[G], W)$ as representations.
- $\operatorname{Hom}_{H}\left(W, \operatorname{Res}_{H}^{G} E\right) \cong \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} W, E\right)$
- $V \otimes_{\mathbb{C}} \operatorname{Ind}_{H}^{G} W \cong \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G} V \otimes_{\mathbb{C}} W\right)$
- If $H \leq K \leq G$ then $\operatorname{Ind}_{K}^{G} \operatorname{Ind}_{H}^{K} W \cong \operatorname{Ind}_{H}^{G} W$

Induction is a functor: If $f: H \rightarrow \mathbb{C}$ is a class function then $\operatorname{Ind}_{H}^{G} f: G \rightarrow \mathbb{C}$ definied by

$$
\operatorname{Ind}_{H}^{G} f(g)=\frac{1}{|H|} \sum_{s \in G, s^{-1}} g_{s \in H} f\left(s^{-1} g s\right)
$$

is a calss function. Moreover if f is a character of W then

$$
\operatorname{Ind}_{H}^{G} \chi_{W}=\chi_{\operatorname{Ind}_{H}^{G} W}
$$

Lemma.

$$
\operatorname{dim} \operatorname{Hom}_{H}\left(V_{1}, V_{2}\right)=\left\langle\chi_{V_{1}}, \chi_{V_{2}}\right\rangle
$$

Lemma.

$$
\langle\psi, \operatorname{Res} \phi\rangle_{H}=\left\langle\operatorname{Ind}_{H}^{G} \psi, \phi\right\rangle_{G}
$$

Lemma. W irrep of H, E irrep of G. Then the number of times that W appears in $\operatorname{Res}_{H}^{G} E$ is the number of times E occurs in $\operatorname{Ind}_{H}^{G} W$

Restriction

Let $H \leq G$ and $K \leq G$ be two subgroups. We are going to induce one of the subgroups and restrict down to the other. Let (ρ, W) be a H rep. Consider the double cosets $K \backslash G / H$:= $\{K g H: g \in G\}$ where $K g H=\{k g h: k \in K, h \in H\}$. For $s \in G$ we define $H_{s}:=s H s^{-1} \cap K$ and $\rho^{s}: H_{s} \rightarrow G L(W)$ sending $x \mapsto \rho\left(s^{-1} x s\right)$.

Theorem.

$$
\operatorname{Res}_{K}^{G} \operatorname{Ind}_{H}^{G}(W)=\bigoplus_{s \in K \backslash G / H} \operatorname{Ind}_{H_{s}}^{K}\left(\rho^{s}\right)
$$

s some representatives

Mackey's Irreducibility

Let $H \leq G$ and $s \in G$, we define $H_{s}:=s H s^{-1} \cap H$. If $\rho: H \rightarrow G L(W)$ is a rep then so is $\operatorname{Res}_{H_{s}}^{H} \rho$ and

$$
\begin{gathered}
\rho^{s}: H_{s} \rightarrow G L(W) \\
x \mapsto \rho\left(s^{-1} x s\right)
\end{gathered}
$$

Theorem. $\operatorname{Ind}_{H}^{G} W$ is irreducible iff W is irreducible and $\forall s \in G-H$

$$
\left\langle\rho^{s}, \operatorname{Res}_{H_{s}}^{H}\right\rangle=0
$$

Lemma. If H is normal in G then $\operatorname{Ind}_{H}^{G} W$ is irreducible iff W is irreducible and $\forall s \in G-H \rho \not \equiv \rho^{s}$

Group Algebra

We now work with G a finite group and K a commutative ring of characteristic zero. We make $K[G]:=\operatorname{span}_{K}\{g$ $g \in G\} \cong K^{|G|}$ the formal span of G as a K module into a ring and therefore a K algebra by defining multiplication as

$$
\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{h \in G} b_{h} h\right)=\sum_{g, h \in G} a_{g} b_{h} g h
$$

This is called the group algebra
If k is a field, V is a k vector space and $\rho: G \rightarrow G L(V)$ is a rep then V can be made into a left $k[G]$ module via

$$
\left(\sum_{g \in G} a_{g} g\right) \cdot v=\sum_{g \in G} a_{g} \rho(g)(v)
$$

If V is a left $k[G]$ module then the following is a rep

$$
g \mapsto(v \mapsto g . v)
$$

Theorem. In characteristic 0 we have complete reducibil-

Center

irreducible submodules.

If c is a conjugacy class of G then we denote $z_{c}=\sum_{g \in c} g$.
Lemma. $\left\{z_{c}\right\}_{c}$ forms a basis of the center of $\mathbb{C}[G]$.

Decomp of $\mathbb{C}[G]$

Consider the irreps of $G,\left(\rho_{i}, W_{i}\right)$.

Theorem.

$$
\begin{aligned}
& \mathbb{C}[G] \cong \prod_{i} M_{\operatorname{dim} W_{i}}(\mathbb{C}) \\
& g \mapsto\left(\rho_{1}(g), \ldots, \rho_{m}(g)\right)
\end{aligned}
$$

extended linearly to all of $\mathbb{C}[G]$
Lemma. Let $\left(u_{1}, \ldots, u_{m}\right) \in \prod_{i} \operatorname{End}\left(W_{i}\right)$ and $u=\sum_{g \in G} u(g) g$ its preimage under the above iso. Then

$$
u(g)=\frac{1}{|G|} \sum_{i} \operatorname{dim}\left(W_{i}\right) \operatorname{Tr}\left(\rho_{i}\left(g^{-1}\right) u_{i}\right)
$$

Theorem. From the decomposition of $\mathbb{C}[G]$ we have homomorphisms (that when collected give an isomorphism) $\rho_{i}: \mathbb{C}[G] \rightarrow \operatorname{End}\left(W_{i}\right)=\operatorname{Mat}_{\operatorname{dim} W_{i}}(\mathbb{C})$ which restricts to the center $\omega_{i}=\left.\rho_{i}\right|_{\text {Cent }(\mathbb{C}[G])}$ for $i=1, \ldots, k$.

$$
\left(\omega_{i}\right)_{i}: \operatorname{cent}(\mathbb{C}[G]) \rightarrow \mathbb{C}^{k}
$$

Is an isomorphism. Explicitly

$$
\omega_{i}\left(\sum u(g) g\right)=\frac{1}{\operatorname{dim} W_{i}} \sum_{g \in G} u(g) \chi_{i}(g)
$$

Conjugacy classes of S_{n} are in bijection with partitions of n.

Young Subgroups

Fix a tableau t_{λ} of shape λ. Then the young subgroups associated are

$$
\begin{gathered}
P=P_{t_{\lambda}}=\left\{g \in S_{n}: g \text { preserves each row }\right\} \\
Q=Q_{t_{\lambda}}=\left\{g \in S_{n}: g \text { preserves each column }\right\}
\end{gathered}
$$

Note that S_{n} acts on the tableux by permuting the numbers. By preseve the rows / columns we are saying the same numbers are in there, we dont care about the order (otherwise both groups would be trivial).
Lemma. If $\lambda=\lambda_{1}+\cdots+\lambda_{m}$ with transpose $\lambda^{\prime}=\mu_{1}+\cdots+\mu_{m^{\prime}}$ then the young subgroups are

$$
\begin{aligned}
P & \cong S_{\lambda_{1}} \times \cdots \times S_{\lambda_{m}} \\
Q & \cong S_{\mu_{1}} \times \cdots \times S_{\mu_{m^{\prime}}}
\end{aligned}
$$

There are three distinguished elements of $\mathbb{C}\left[S_{n}\right]$ associated to the young subgroups

$$
a_{\lambda}=\sum_{g \in P} e_{g}, \quad b_{\lambda}=\sum_{g \in Q} \operatorname{sgn}(g) e_{g}, \quad c_{\lambda}=a_{\lambda} b_{\lambda}
$$

Classification of Irreps

Theorem. - Some scaler multiple of c_{λ} is idempotent
i.e.

$$
\exists n_{\lambda} \in \mathbb{C}, \quad c_{\lambda}^{2}=n_{\lambda} c_{\lambda}
$$

- For every $\lambda, \mathbb{C}\left[S_{n}\right] c_{\lambda}$ is an irreducible representation of S_{n}
- Every irreducible representation of S_{n} is given by $\mathbb{C}\left[S_{n}\right] c_{\lambda}$ for some λ

We will need several lemmas to prove this result which we now develop.

First notice that $P \cap Q=\{1\}$, thus $\forall g \in S_{n}$ we can write it in at most one way as $g=p q$ where $p \in P, q \in Q$ (it
might be not expressable in this form). Applying these to our distinguished element

$$
c_{\lambda}=\sum_{p q \in P Q} \operatorname{sgn}(q) e_{p q}
$$

Ignoring lectures 22,23 ; have the lemmas for the proof etc

Applications

Lemma. For any λ we have that $c_{\lambda}^{2}=n_{\lambda} c_{\lambda}$

$$
n_{\lambda}=\frac{n!}{\operatorname{dim}\left(\mathbb{C}\left[S_{n}\right] c_{\lambda}\right)}
$$

5.3.1 Frobenius Formula

We set up some notation. Let $V_{\lambda}=\mathbb{C}\left[S_{n}\right] c_{\lambda}$ and χ_{λ} the associated character. We can write a partition multiplicatively

$$
\lambda=\lambda_{1}+\cdots+\lambda_{m} \leadsto \lambda_{1} \cdots \lambda_{m}
$$

which if we have repeated entries we can collpse to be something of the form

$$
\lambda_{i}=n^{i_{n}}(n-1)^{i_{n-1}} \cdots 1^{i_{1}}
$$

so to a tuple of non-negative integers $i=\left(i_{1}, \cdots, i_{n}\right)$ we can associate a partition λ_{i} above.

Fix a $k \geq$ the number of rows in λ_{i} and let

$$
p_{j}(x)=x_{1}^{j}+\cdots x_{k}^{j}
$$

and

$$
\Delta(x)=\prod_{1 \leq i<j \leq k}\left(x_{i}-x_{j}\right)
$$

Finally if $f(x)=f\left(x_{1}, \ldots, x_{k}\right)$ is a formal power series and $\left(\ell_{1}, \ldots, \ell_{k}\right) \in \mathbb{Z}_{\geq 0}^{k}$ then we denote

$$
[f(x)]_{\left(\ell_{1}, \ldots, \ell_{k}\right)}=\text { the coefficient of } x_{1}^{\ell_{1}} \cdots x_{k}^{\ell_{k}} \text { in } f
$$

Theorem.

$$
\chi_{\lambda}\left(C_{i}\right)=\left[\Delta(x) \prod_{j=1}^{n} p_{j}(x)^{i_{j}}\right]_{\left(\ell_{1}, \ldots, \ell_{k}\right)}
$$

As a corrolory we know that

$$
\operatorname{dim} V_{\lambda}=\frac{n!}{\ell_{1}!\cdots \ell_{k}!} \prod_{i<j}\left(\ell_{i}-\ell_{j}\right)=\frac{n!}{\prod \text { hook lengths in } \lambda}
$$

and this is further independent of our choice of k.
Lemma. The dimension of $\mathbb{C}\left[S_{n}\right] c_{\lambda}$ is equal to the number of tableux on λ such that the rows and columns are increasing

Slide 153 remarks, Schur-Weyl duality

Alternating Groups

$A_{n} \leq S_{n}$ is the commutator subgroup of S_{n}, it has index two. For a general subgroup of index two $H \leq G$ we have the permutation representation of $G \circlearrowright G / H=\{1, r\}$ which decomposes into a direct sum $\mathbb{C}_{\text {triv }} \oplus \mathbb{C}_{\text {non-triv }}$

Lemma. Let V be an irrep of G, and let $W=\operatorname{Res}_{H}^{G} V$ where $H \leq G$ an index two subgroup. Let $V^{\prime}=V \otimes \mathbb{C}_{\text {non-triv }}$ for the permutation representation. Then one of the following holds

- $V \nsubseteq V^{\prime}$: Then W is irreducible and $\operatorname{Ind}_{H}^{G} W \cong V \oplus V^{\prime}$
- $V \cong V^{\prime}$: Then $W \cong W^{\prime} \oplus W^{\prime \prime}$ for two non-isomorphic irreps $W^{\prime}, W^{\prime \prime}$. Moreover

$$
V \cong \operatorname{Ind}_{H}^{G} W^{\prime}=\operatorname{Ind}_{H}^{G} W^{\prime \prime}
$$

158-161

We set k to be an algebraically closed field. A k alge$\boldsymbol{b r a}$ is a k vector space with a bilinear multiplication. A left A-module is a k-vector space V with a homomorphism $\rho: A \rightarrow \operatorname{End}_{k}(V)$, a linear map preserving multiplication and unit.

A submodule is a subspace $U \leq V$ such that $\rho(a) U \leq U$ for all $a \in A$.

A non-zero rep V of A is irreducible if its only subrepresentations are V and $\{0\}$. It is indecomposable if it cannot be written as a direct sum of two non-zero sub representations.

If V_{1}, V_{2} are reps of A then $V_{1} \oplus V_{2}$ is too via

$$
a\left(v_{1}+v_{2}\right)=a v_{1}+a v_{2}
$$

A homomorphism is a map $\phi: V_{1} \rightarrow V_{2}$ such that $\phi(a \cdot v)=a \cdot \phi(v)$.

Theorem (Schur's Lemma). If V_{1}, V_{2} are A reps and ϕ : $V_{1} \rightarrow V_{2}$ is a non-zero hom then

- If V_{1} is irreducible, then ϕ is injective
- If V_{2} is irreducible, then ϕ is surjevtive
- If V_{1}, V_{2} is irreducible, then ϕ is an isomorphism
moreover if $V_{1}=V_{2}$ and ϕ is an iso then it acts by a scalar.
Lemma. If A is commutative algebra then every finite dim rep of A is one dimensional

A left (right) ideal of a k-algebra A is a subspace $I \leq A$ that is closed under left (right) multiplication by A. We call a space that is both a left and right idea a two sided ideal.

An algebra A is simple if 0 and A are its only two sided ideals.

A representation of an algebra is called faithful if it is injective.

A rep of A is called semi-simple if it is the direct sum of irreducible representations.
Lemma. V_{i} finite dimensional irreps of A. If

$$
W \leq V=\sum_{i} V_{i}^{n_{i}}
$$

then for some $r_{i} \leq n_{i}$

$$
W \cong \oplus_{i} V_{i}^{r_{i}}
$$

and there is a morphism of representations $\phi: W \rightarrow V$ given on components $V_{i}^{r_{i}} \rightarrow V_{i}^{n_{i}}$ by multiplying on the right by X_{i} an $r_{i} \times n_{i}$ matrix with linearly independent rows.
Lemma. If $V=\oplus_{i \in I} V_{i}$ where each V_{i} is irreducible and $f: V \rightarrow U$ is surjective then there exists a subset $J \subseteq I$ such that f maps $\oplus_{i \in J} V_{i}$ isomorphically onto U.

Lemma. V irrep of finite dimension and $v_{1}, \ldots, v_{n} \in V$ linearly independent. Then for every other collection $w_{1}, \ldots, w_{n} \in V$ there exists an $a \in A$ such that for every i

$$
a v_{i}=w_{i}
$$

Theorem (Density Theorem). If (ρ, V) is a finite dimensional irrep of A then ρ is a surjection.

Given a rep of A, V then $V^{*}:=\operatorname{Hom}_{k}(V, k)$ is a right A module via

$$
(f \cdot a)(v)=f(a . v)
$$

Lemma. If $A=\prod_{i} \operatorname{Mat}_{d_{i}}(k)$ then the irreps of A are $V_{1}=$ $k^{d_{1}}, \ldots, V_{r}=k^{d_{r}}$, moreover any finite dimensional rep of A is isomorphic to $\oplus V_{i}^{n_{i}}$

Filtrations

A finite filtration of V is a sequence of subreps $0=V_{0}<$ $V_{1}<\cdots<V_{n}=V$
Lemma. Every finite dimensional rep V of A admits a finite filtration such that V_{i} / V_{i-1} is irreducible for all i.

Such a filtration is called a composition series.
Theorem. Any two composition series of V are the same length and the quotients are isomorphic (up to reordering).

The collection of irreps $\left\{V_{i} / V_{i-1}: i=1, \ldots, n\right\}$ is called the Jordan-Holder series of V.
Theorem (Krull-Schmidt). Any finite dimensional rep V of A can be uniqueqly decomposed into a direct sum of indecomposable subreps

Lemma. If W is a finite dimensional indecomposable rep of A then a hom $W \rightarrow W$ is either nilpotent or an isomorphism. Moreover the sum of nilpotent maps is nilpotent.

If $\theta: W \rightarrow W$ is a homomorphism of A reps then for $\lambda \in k$ we have $W_{\lambda}=\left\{w \in W:(\theta-\lambda)^{n} w=0\right.$ some n$\}$, this is the generalised eigenspace.

Finite Dimensional

Let A be a finite dimensional k algebra. The radical of A is the set

$$
\operatorname{Rad}(A)=\left\{a \in A: a V_{i}==\quad \forall V_{i} \text { irreducible reps }\right\}
$$

Lemma. $\operatorname{Rad}(A)$ is a two sided ideal.
Lemma. Let I be a nilpotent two sided ideal, then it is contained in the radical. Moreover the radical is the largest nilpotent two sided ideal.
Theorem. A has only finitely many irreps up to isomorphism. Moreover

$$
A / \operatorname{Rad}(A) \cong \prod_{i} \operatorname{End}_{k}\left(V_{i}\right)
$$

where V_{i} are the irreps of A.
Lemma. For the irreps of A, V_{i} we have that

$$
\sum_{i}\left(\operatorname{dim} V_{i}\right)^{2} \leq \operatorname{dim} A
$$

A finite dimensional algebra is semisimple if its radical is zero.
Theorem. For a finite dimensional algebra A the following are equivilent

- A is semisimple
- $\sum_{i}\left(\operatorname{dim} V_{i}\right)^{2}=\operatorname{dim} A$
- $A \cong \prod_{i} M a t_{d_{i}}(k)$
- Every finite dim rep of A is completely reducible
- Every subrep of a finite dim rep of A admits a complementary subrep.
- A is completely reducible as an A module.

Characters

Characters are defined in the same way
Lemma. Characters of irreps of A are linearly independent.
Lemma. If A is finite dimensional semisimple algebra then the characters form a basis of $(A /[A, A])^{*}$

Weyl Algebra

The Weyl algebra is

$$
k[x, y] /\langle y x-x y-1\rangle
$$

Theorem. The Weyl algebra has a basis $\left\{x^{i} y^{j}: i, j \geq 0\right\}$

Tensor Product

If A, B are k-algebras then we can make the tensor

$$
A \otimes_{k} B
$$

with the multiplication

$$
(a \otimes b)(\alpha \otimes \beta)=a \alpha \otimes b \beta
$$

If V is a rep of A and W is a rep of B then $V \otimes_{k} W$ is a rep of $A \otimes_{k} B$ via the action

$$
(a \otimes b)(v \otimes w)=a v \otimes b w
$$

Lemma. V irrep of A, W irrep of B then $V \otimes W$ is irrep of $A \otimes B$. Moreover every irrep of $A \otimes B$ is of this form.

Theorem. A, B subalgebras of $\operatorname{End}(E)$, where E is a finite dimensional k-vector space, such that A is semisimple and $B=\operatorname{End}_{A}(E)$. Then

- $A=E n d_{B}(E)$
- B is semi-simple
- As a rep of $A \otimes B E$ decomposes as a direct sum over the tensor of irreps of A and B

$$
E=\bigoplus_{i} V_{i} \otimes W_{i}
$$

for some ordering on the irreps of A and B.

[^0]
Structure of Finite Dimensional

Let A be a k-algebra and $I \leq A$ a nilpotent two sided ideal. Recall that an element of an algebra is called idempotent when $e^{2}=e$.

Lemma. Let $e \in A / I$ be idempotent then there exists idempotent $f \in A$ such that $\pi(f)=e$, moreover this lift is unique up to conjagacy by an element of $1+I$.

A complete system of orthogonal idempotents in a kalgebra A is a collection of idempotents $e_{1}, \ldots, e_{m} \in A$ such that $e_{i} e_{j}=0$ for each $i \neq j$ and $e_{1}+\cdots+e_{m}=1$.

Lemma. If e_{1}, \ldots, e_{m} is a complete system of idempotents of A / I then there exists a complete system of idempotents in A, f_{1}, \ldots, f_{m} such that $\pi\left(f_{i}\right)=e_{i}$.

Theorem. If P, M, N are representaitons of A (Left A modules) then the following are equivilent

- If $\alpha: M \rightarrow N$ is a surjection and $P \rightarrow N$ then there exists $a u: P \rightarrow M$ such that $\alpha \circ u=v$.

- If $\alpha: M \rightarrow N$ is a surjection then there exists a $u: P \rightarrow M$ such that $\alpha \circ u=$ id i.e. α splits.
- There exists an A module Q such that $P \oplus Q$ is a free A module
- The functor $\operatorname{Hom}_{A}(P,-)$ is exact

A module satisfying one of the above conditions is called projective.

Theorem. A finite dimensional with irreps M_{1}, \ldots, M_{n} we have

- For each $i=1, \ldots, n$ there exists a unique indecomposable finitely generated projective A module P_{i} such that $\operatorname{dim} \operatorname{Hom}_{A}\left(P_{i}, M_{j}\right)=\delta_{i j}$
- $A \cong \oplus_{i} P_{i}^{\operatorname{dim} M_{i}}$
- Any indecomposable finitely generated projective A module is isomorphic to P_{i} for some i

The P_{i} is called the projective cover of M_{i}.
Lemma. If N is a finite dimensional rep of A then $\operatorname{dim} \operatorname{Hom}_{A}\left(P_{i}, N\right)=\left[N: M_{i}\right]$ which is the multiplicity of the occurence of M_{i} in the Jordan-Holder series.

If A has irreps M_{i} with projective covers P_{i} then the matrix

$$
C_{i j}:=\operatorname{dim} \operatorname{Hom}_{A}\left(P_{i}, P_{j}\right)=\left[P_{j}: M_{i}\right]
$$

is called the Cartan matrix of A .

[^0]: Lecture 34 , enveloping algebra

