Representation Theory Summary

Riley Moriss

January 11, 2024

1	Rep	3	Indu	
	1.1	Making New Reps		3.1
	1.2	Characters		3.2
	1.3	Counting Irreps		
		Canonical Decomposition	4	Grou
	1.5	Regular Rep		4.1
				4.2
2	2 Special Cases			
	2.1	Abelian Group	5	Symr
	2.2			5 1

2.1		
2.2	Products of Groups	
2.3	Semi-Direct Product	
2.4	Solvable and Sylow Groups	

3	Induction & Restriction				
	3.1	Restriction			
	3.2	Mackey's Irreducibility			
4	Group Algebra				
	4.1	Decomp of $\mathbb{C}[G]$			
		Center			
5	Sym	metric Groups			

5.1	Young Subgroups	•
5.2	Classification of Irreps	
5.3	Applications	

		5.3.1 Frobenius Formula
	5.4	Alternating Groups
6	Con	eral Representations of Algebras
U	Gen	eral Representations of Algebras
	6.1	Filtrations
	6.2	Finite Dimensional
	6.3	Characters
	6.4	Weyl Algebra

- 6.5 Tensor Product
- 6.6 Structure of Finite Dimensional Algebras .

A **representation** of a finite group G on a \mathbb{C} vector space **Direct Sum** V is a group homomorphism

$$G \rightarrow Aut(V)$$

The dimension of V is known as the *degree* of the representation.

A **morphism** of representations, (ρ_1, V_1) and (ρ_2, V_2) , is a linear function $\phi: V_1 \to V_2$ such that

$$\forall g \in G \quad \rho_2(g)\phi = \phi\rho_1(g)$$

A subrepresentation of (ρ, V) is a vector subspace $W \leq$ V such that $\forall g \in G \rho(g)(W) \subseteq W$ Recall that for $W \leq V$ a projection of $V \rightarrow W$ is a linear

map that restricted to W is the identity.

Lemma. There is a bijection

$$\{projections V \rightarrow W\} \leftrightarrow \{ compliments of W in V\}$$

sending a projection to its kernel and a decomposition to the projection.

Lemma. If $\rho : G \to GL(V)$ is a rep and $W \le V$ is a subrep where then there exists a complimentary subrep $W' \leq V$ such that $V = W \oplus W'$.

Note that there is always a complimentary subspace but it might not be stable under the G action.

A representation is *irreducible* if it is non-trivial and has no non-trivial strict subreps.

Theorem. Every representation decomposes into a direct sum of irreducible reps.

Note that this is not true in general if we consider representations on non-C vector spaces, or infinite groups etc. This property is known as *complete reducibility*.

Theorem (Schurs Lemma). If (ρ_1, V_1) and (ρ_2, V_2) are irreps and $f \in Hom_G(V_1, V_2)$ then $f = \lambda I$ for some $\lambda \in \mathbb{C}$. In particular f is either an iso or the zero map.

Hom Rep Making New Reps

Let $(\rho, V), (\rho', V')$ be two representations of G.

$$\tau: G \to GL(V \oplus V')$$

$$\tau(g)(v+v') = \rho(g)(v) + \rho'(g)(v')$$

Tensor If V and V' have a basis $\{v_i\}, \{v'_i\}$ respectively then $V \otimes V'$ has a basis $\{v_i \otimes v'_i\}$ and we get a new representation via

$$\tau: G \to GL(V \otimes V')$$

$$\tau(g)(v \otimes v') = \rho(g)(v) \otimes \rho'(g)(v')$$

Symmetric and Alternating Square A subcase is where we want to only use the first representation on $V \otimes V$. If we define

$$\theta: V \otimes V \to V \otimes V$$

$$v \otimes w \mapsto w \otimes v$$

The

$$V \otimes V = Sym^2(V) \oplus \Lambda^2(V)$$

$$Sym^2(V) = \{x \in V \otimes V : \theta(x) = x\}$$

These spaces have respective bases $\{e_i \otimes e_i + e_i \otimes e_i\}$ and $\{e_i \otimes e_j - e_i \otimes e_i\}$. Then these are both subrepresentations on $V \otimes V$.

Dual Rep Given a vector space we can take its linear dual $V^* = Hom_{\mathbb{C}}(V, \mathbb{C}).$

$$\pi: G \to GL(V^*)$$

$$\pi(g)(f) = g.f$$

$$g.f(v) = f(\rho_{g^{-1}}(v))$$

$$\pi: G \to GL(Hom_{\mathbb{C}}(V, V'))$$

 $\pi(g)(f)(v) = \rho'_{\varrho}(f(\rho_{g^{-1}}(v)))$

Characters

The *character* of a rep (ρ, V) is the map

$$\chi_{\rho} = \chi_{V} : G \to \mathbb{C}$$

$$\chi(g) = Tr(\rho(g))$$

or equally the sum of eigenvalues with multiplicity.

Lemma. The character has the following properties

- $\chi(1) = \dim V = \deg \rho$
- $\chi(g^{-1}) = \overline{\chi(g)}$ the complex conjugate
- $\chi(hgh^{-1}) = \chi(g)$, it is a class function
- $\chi_{\rho \oplus \rho'} = \chi_{\rho} + \chi_{\rho'}$
- $\chi_{\rho\otimes\rho'} = \chi_{\rho} \cdot \chi_{\rho'}$
- $\chi_{\rho^*} = \overline{\chi_{\rho}}$
- $\chi_{Hom(V,V')} = \overline{\chi_V} \cdot \chi_{V'}$
- $\chi_{S^2V}(g) = \frac{1}{2}[\chi_V(g)^2 + \chi_V(g^2)]$
- $\chi_{\wedge^2 V}(g) = \frac{1}{2} [\chi_V(g)^2 \chi_V(g^2)]$

Lemma.

 $Hom_{\mathbb{C}}(V, V') \cong V^* \otimes V'$

as representations.

A function $G \to \mathbb{C}$ is a *class function* if $\forall g, h \in G$ we have $f(hgh^{-1}) = f$, it is constant on conjugacy classes.

We define the following inner product on classfunction $\phi, \psi :: G \to \mathbb{C}$

$$\langle \phi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \phi(g) \psi(g^{-1})$$

Theorem.

 $\langle \chi, \chi \rangle = 1$

iff χ is an irreducible character.

$$\Lambda^{2}(V) = \{x \in V \otimes V : \theta(x) = -x\}$$

$$v \otimes w \mapsto w \otimes v$$

n we can write

Lemma. If χ, χ' are two non-isomorphic irreducible characters then

 $\langle \chi, \chi' \rangle = 0$

Lemma. If (ρ, V) is a G rep and V^G are the fixed points then

 $\dim V^G = \frac{1}{|G|} \sum_{g \in G} \chi_\rho(g)$

Theorem. V a rep of G and W_i an irrep of G. The number of W_i 's contained in V as subrepresentations is then

 $\langle \chi_V, \chi_{W_i} \rangle$

Theorem. Two representations have the same character iff they are isomorphic.

Counting Irreps

Theorem. *The number of irreducible representatinos of G is the same as the number of conjugacy classes.*

If W_i are all the irreps of G and they have respective dimensions n_i then

$$\sum_{i} n_i^2 = |G|$$

$$\sum_{i} n_i \chi_{W_i}(g) = 0 \quad \forall g \neq 1$$

Lemma. If $g \in G$ we denote c(g) := size of the conjugacy class of g. Then

$$\sum_{i} \chi_i(g) \overline{\chi_i(g)} = \frac{|G|}{c(g)}$$

and for h not in the conjugacy class of g

and

$$\sum_{i} \chi_i(h) \overline{\chi_i(g)} = 0$$

Lemma. The degrees of irreps of G divide |G|/|cent(G)|

Theorem. $H \leq G$ normal subgroup and (ρ, V) an irrep of *G* then either

- $\rho|_H$ is isotypic (has only one irred component)
- *OR*; $\exists H \leq K < G$ and an irrep of K, σ , such that $\rho = \operatorname{Ind}_{K}^{G} \sigma$

Lemma. The degrees of irreps of G divide |G|/|A| where A is any abelian normal subgroup of G.

Canonical Decomposition

Ignoring

Regular Rep

The **regular representation** of G is the \mathbb{C} vector space $span\{e_g : g \in G\}$ with the action that $h.e_g = e_{hg}$ which gets extended linearly to the rest of the vector space. This has the character

$$r_G(g) = \begin{cases} |G|, & g = 1\\ 0, & else \end{cases}$$

Moreover it decomposes into

 $R_G = \oplus_i W_i^{\dim W_i}$

where W_i runs over all the irreps of G.

Abelian Group

In an abelian group each conjugacy class has exactly one element.

Theorem. G is abelian iff all irreducible reps have degree one.

Lemma. If A is an abelian subgroup of G then every irreducible rep of G has degree $\leq \frac{|G|}{|A|}$

Let G_1, G_2 be two groups with respective representations $(\rho_1, V_1), (\rho_2, V_2)$. We get a representation

 $\rho_1 \otimes \rho_2 : G_1 \times G_2 \to GL(V_1 \otimes V_2)$

 $(g_1, g_2) \mapsto \rho_1(g_1) \otimes \rho_2(g_2)$

This has character the product of the two other characters as before.

- If ρ_i are both irreps then $\rho_1 \otimes \rho_2$ is irrep Theorem.
 - Every irrep of $G_1 \times G_2$ is iso to something of this form.

Semi-Direct Product

Let $G = H \ltimes A$ where A is normal and abelian. All iirps of A are one dimensional, hence they form a group namely $X = \text{Hom}(A, \mathbb{C}^*)$. There is a G action on X via

 $g.\chi(a) = \chi(g^{-1}ag)$

Then for each character we get a subgroup of H,

 $H_i := \{h \in H : h, \chi_i = \chi_i\}$

Note that if χ_i is in the same H orbit as χ_i then $H_i = H_i$. Let $G_i = H_i \ltimes A$ the characters of A extend to characters of G_i by just ignoring the H_i , $\chi_i(ha) = \chi_i(a)$. Irreps of H_i extend in the same way to irreps of G_i . Then if ρ is such an irrep of G_i

- $\operatorname{Ind}_{G}^{G}(\chi_{i} \otimes \rho)$ is irreducible
- Every irrep of G arrises in this way.

Recall that a *solvable* group G has a finite derived series i.e.

 $\{1\} \le G_0 \le \cdots \le G_n = G$

such that $G_{i-1} \leq G_i$ normal and G_i/G_{i-1} is abelian. A **supersolvable** group moreover has that G_i/G_{i-1} is cyclic. Finally a *nilpotent* group is one that is solvable and $G_i/G_{i-1} \leq Cent(\overline{G_i/G_{i-1}}).$

Products of Groups Lemma. Nilpotent \implies Supersolvable \implies Solvable

A *p-group* is a group whose order is a power of p, for p prime.

Theorem. Every p-group is nilpotent

Lemma. If a p-group G acts on a finite set X then

 $|X| \equiv |X^G| \pmod{p}$

Lemma. Let V be a non-zero k-vector space, where characteristic of k is p. Let (ρ, V) be a rep of G. If G is a p-group then there exists a $v \in V - \{0\}$ that is fixed by $\rho(g)$ for all $g \in G i.e.$

$$\forall g \in G \quad \rho(g)v = v$$

Theorem. The only irreducible rep of a p-group in charac*teristic p is the trivial rep.*

Recall that for a group G a Sylow-p subgroup is a maximal p-subgroup.

Theorem. If p is prime and $|G| = mp^n$ for some m coprime to p. Then

- There exists a Sylow p-subgroup (of order n)
- All Sylow-p subgroups are conjugate i.e. For any two Sylow-p subgroups P, Q there exists a $g \in G$ such that

$$gPg^{-1} = Q$$

• Each p-subgroup of G is contained in a Sylow-p subgroup

Solvable and Sylow Groups Lemma. G non-abelian and supersolvable then there is a normal abelian subgroup that is not contained in the center of G.

> Lemma. Every irreducible representation of a supersolvable group is induced by a degree one representation of a subgroup.

Let $H \le G$ a subgroup and R = G/H a collection of representatives of cosets. Let *W* be a $\mathbb{C}[H]$ module. We define the *induction* of *W* to G to be the representation

$$\operatorname{Ind}_{H}^{G} W = \mathbb{C}[G] \otimes_{\mathbb{C}[H]} W$$

with $\mathbb{C}[G]$ action

$$g.(x \otimes w) = (gx) \otimes w$$

which has the following properties

- dim $\operatorname{Ind}_{H}^{G} W = [G:H] \dim W$
- $\chi_{\text{Ind}_{H}^{G}W}(g) = \frac{1}{|H|} \sum_{s \in G, s^{-1}gs \in H} \chi_{W}(s^{-1}gs)$
- $\operatorname{Ind}_{H}^{G} \cong \operatorname{Hom}_{H}(\mathbb{C}[G], W)$ as representations.
- $\operatorname{Hom}_{H}(W, \operatorname{Res}_{H}^{G} E) \cong \operatorname{Hom}_{G}(\operatorname{Ind}_{H}^{G} W, E)$
- $V \otimes_{\mathbb{C}} \operatorname{Ind}_{H}^{G} W \cong \operatorname{Ind}_{H}^{G}(\operatorname{Res}_{H}^{G} V \otimes_{\mathbb{C}} W)$
- If $H \le K \le G$ then $\operatorname{Ind}_{K}^{G} \operatorname{Ind}_{H}^{K} W \cong \operatorname{Ind}_{H}^{G} W$

Induction is a functor: If $f: H \to \mathbb{C}$ is a class function then $\operatorname{Ind}_{H}^{G} f: G \to \mathbb{C}$ definied by

$$\operatorname{Ind}_{H}^{G} f(g) = \frac{1}{|H|} \sum_{s \in G, s^{-1}gs \in H} f(s^{-1}gs)$$

is a calss function. Moreover if f is a character of W then

$$\operatorname{Ind}_{H}^{G}\chi_{W} = \chi_{\operatorname{Ind}_{H}^{G}W}$$

Lemma.

$$\dim \operatorname{Hom}_{H}(V_{1}, V_{2}) = \langle \chi_{V_{1}}, \chi_{V_{2}} \rangle$$

Lemma.

$$\langle \psi, \operatorname{Res} \phi \rangle_H = \langle \operatorname{Ind}_H^G \psi, \phi \rangle_G$$

Lemma. W irrep of H, E irrep of G. Then the number of times that W appears in $\operatorname{Res}_{H}^{G} E$ is the number of times E occurs in $\operatorname{Ind}_{H}^{G} W$

Ignoring a lot of lecture 10 and 11

Restriction

Let $H \leq G$ and $K \leq G$ be two subgroups. We are going to induce one of the subgroups and restrict down to the other. Let (ρ, W) be a H rep. Consider the double cosets $K \setminus G/H :=$ $\{KgH : g \in G\}$ where $KgH = \{kgh : k \in K, h \in H\}$. For $s \in G$ we define $H_s := sHs^{-1} \cap K$ and $\rho^s : H_s \to GL(W)$ sending $x \mapsto \rho(s^{-1}xs)$.

Theorem.

$$\operatorname{Res}_{K}^{G}\operatorname{Ind}_{H}^{G}(W) = \bigoplus_{s \in K \setminus G/H} \operatorname{Ind}_{H_{s}}^{K}(\rho^{s})$$

s some representatives

Mackey's Irreducibility

Let $H \leq G$ and $s \in G$, we define $H_s := sHs^{-1} \cap H$. If $\rho: H \to GL(W)$ is a rep then so is $\operatorname{Res}_{H_s}^H \rho$ and

 $\rho^s: H_s \to GL(W)$

 $x \mapsto \rho(s^{-1}xs)$

Theorem. $\operatorname{Ind}_{H}^{G} W$ is irreducible iff W is irreducible and $\forall s \in G - H$

 $\langle \rho^s, \operatorname{Res}_{H_s}^H \rangle = 0$

Lemma. If *H* is normal in *G* then $\operatorname{Ind}_{H}^{G} W$ is irreducible iff *W* is irreducible and $\forall s \in G - H \rho \ncong \rho^{s}$

ring of characteristic zero. We make $K[G] := span_K\{g: ity. Every k[G] module decomposes into the direct sum of$ $g \in G$ $\cong K^{|G|}$ the formal span of G as a K module into a ring *irreducible submodules*. and therefore a K algebra by defining multiplication as

$$\left(\sum_{g\in G} a_g g\right) \left(\sum_{h\in G} b_h h\right) = \sum_{g,h\in G} a_g b_h g h$$

This is called the **group algebra**

If k is a field, V is a k vector space and $\rho : G \to GL(V)$ is a rep then V can be made into a left k[G] module via

$$\left(\sum_{g\in G}a_gg\right).v=\sum_{g\in G}a_g\rho(g)(v)$$

If V is a left k[G] module then the following is a rep

$$g \mapsto (v \mapsto g.v)$$

We now work with G a finite group and K a commutative **Theorem.** In characteristic 0 we have complete reducibil-

Decomp of \mathbb{C} [G]

Consider the irreps of G, (ρ_i, W_i) .

Theorem.

$$\mathbb{C}[G] \cong \prod_{i} M_{\dim W_{i}}(\mathbb{C})$$

$$g \mapsto (\rho_1(g), ..., \rho_m(g))$$

extended linearly to all of $\mathbb{C}[G]$

Lemma. Let $(u_1, ..., u_m) \in \prod_i End(W_i)$ and $u = \sum_{g \in G} u(g)g$ its preimage under the above iso. Then

$$u(g) = \frac{1}{|G|} \sum_{i} \dim(W_i) Tr(\rho_i(g^{-1})u_i)$$

If c is a conjugacy class of G then we denote $z_c = \sum_{g \in c} g$.

Lemma. $\{z_c\}_c$ forms a basis of the center of $\mathbb{C}[G]$.

Theorem. From the decomposition of $\mathbb{C}[G]$ we have homomorphisms (that when collected give an isomorphism) $\rho_i : \mathbb{C}[G] \to End(W_i) = Mat_{\dim W_i}(\mathbb{C})$ which restricts to the center $\omega_i = \rho_i|_{Cent(\mathbb{C}[G])}$ for i = 1, ..., k.

$$(\omega_i)_i : cent(\mathbb{C}[G]) \to \mathbb{C}^k$$

Is an isomorphism. Explicitly

$$\omega_i \left(\sum u(g)g \right) = \frac{1}{\dim W_i} \sum_{g \in G} u(g)\chi_i(g)$$

Ignoring algebraic integer stuff... Lecture 15

Conjugacy classes of S_n are in bijection with partitions n of n.

Young Subgroups

Fix a tableau t_{λ} of shape λ . Then the young subgroups associated are

$$P = P_{t_{\lambda}} = \{g \in S_n : g \text{ preserves each row}\}$$

$$Q = Q_{t_{\lambda}} = \{g \in S_n : g \text{ preserves each column}\}$$

Note that S_n acts on the tableux by permuting the numbers. By preseve the rows / columns we are saying the same numbers are in there, we dont care about the order (otherwise both groups would be trivial).

Lemma. If $\lambda = \lambda_1 + \cdots + \lambda_m$ with transpose $\lambda' = \mu_1 + \cdots + \mu_{m'}$ then the young subgroups are

$$P \cong S_{\lambda_1} \times \cdots \times S_{\lambda_m}$$
$$Q \cong S_{\mu_1} \times \cdots \times S_{\mu_{m'}}$$

There are three distinguished elements of $\mathbb{C}[S_n]$ associated to the young subgroups

$$a_{\lambda} = \sum_{g \in P} e_g, \quad b_{\lambda} = \sum_{g \in Q} sgn(g)e_g, \quad c_{\lambda} = a_{\lambda}b_{\lambda}$$

Classification of Irreps

• Some scaler multiple of c_{λ} is idempotent Theorem. i.e.

$$\exists n_{\lambda} \in \mathbb{C}, \quad c_{\lambda}^2 = n_{\lambda}c_{\lambda}$$

- For every λ , $\mathbb{C}[S_n]c_{\lambda}$ is an irreducible representation of S_n
- Every irreducible representation of S_n is given by $\mathbb{C}[S_n]c_{\lambda}$ for some λ

We will need several lemmas to prove this result w we now develop.

First notice that $P \cap Q = \{1\}$, thus $\forall g \in S_n$ we can write it in at most one way as g = pq where $p \in P, q \in Q$ (it

$$c_{\lambda} = \sum_{pq \in PQ} sgn(q)e_{pq}$$

Ignoring lectures 22, 23; have the lemmas for the proof etc

Lemma. For any λ we have that $c_{\lambda}^2 = n_{\lambda}c_{\lambda}$

$$n_{\lambda} = \frac{n!}{\dim(\mathbb{C}[S_n]c_{\lambda})}$$

5.3.1 Frobenius Formula

We set up some notation. Let $V_{\lambda} = \mathbb{C}[S_n]c_{\lambda}$ and χ_{λ} the associated character. We can write a partition multiplicatively

$$\lambda = \lambda_1 + \dots + \lambda_m \rightsquigarrow \lambda_1 \cdots \lambda_m$$

which if we have repeated entries we can collpse to be something of the form

$$\lambda_i = n^{i_n} (n-1)^{i_{n-1}} \cdots 1^{i_1}$$

so to a tuple of non-negative integers $i = (i_1, \dots, i_n)$ we can associate a partition λ_i above.

Fix a $k \ge$ the number of rows in λ_i and let

$$p_j(x) = x_1^j + \cdots x_n^j$$

and

$$\Delta(x) = \prod_{1 \le i < j \le k} (x_i - x_j)$$

Finally if $f(x) = f(x_1, ..., x_k)$ is a formal power series and $(\ell_1, ..., \ell_k) \in \mathbb{Z}_{>0}^k$ then we denote

$$[f(x)]_{(\ell_1,\dots,\ell_k)} =$$
 the coefficient of $x_1^{\ell_1} \cdots x_k^{\ell_k}$ in f

$$\chi_{\lambda}(C_i) = \left[\Delta(x) \prod_{j=1}^n p_j(x)^{i_j}\right]_{(\ell_1,\dots,\ell_k)}$$

As a corrolory we know that

$$\dim V_{\lambda} = \frac{n!}{\ell_1! \cdots \ell_k!} \prod_{i < j} (\ell_i - \ell_j) = \frac{n!}{\prod \text{ hook lengths in } \lambda}$$

and this is further independent of our choice of k.

Lemma. The dimension of $\mathbb{C}[S_n]c_{\lambda}$ is equal to the number of tableux on λ such that the rows and columns are increasing

Slide 153 remarks, Schur-Weyl duality

Alternating Groups

 $A_n \leq S_n$ is the commutator subgroup of S_n , it has index two. For a general subgroup of index two $H \leq G$ we have the permutation representation of $G \cup G/H = \{1, r\}$ which decomposes into a direct sum $\mathbb{C}_{triv} \oplus \mathbb{C}_{non-triv}$

Lemma. Let V be an irrep of G, and let $W = \operatorname{Res}_{H}^{G} V$ where $H \leq G$ an index two subgroup. Let $V' = V \otimes \mathbb{C}_{non-triv}$ for the permutation representation. Then one of the following holds

- $V \not\cong V'$: Then W is irreducible and $\operatorname{Ind}_{H}^{G} W \cong V \oplus V'$
- $V \cong V'$: Then $W \cong W' \oplus W''$ for two non-isomorphic irreps W', W". Moreover

 $V \cong \operatorname{Ind}_{H}^{G} W' = \operatorname{Ind}_{H}^{G} W''$

158 - 161

We set *k* to be an algebraically closed field. A *k* **algebra** is a *k* vector space with a bilinear multiplication. A left *A*-module is a *k*-vector space V with a homomorphism $\rho : A \rightarrow End_k(V)$, a linear map preserving multiplication and unit.

A **submodule** is a subspace $U \le V$ such that $\rho(a)U \le U$ for all $a \in A$.

A non-zero rep V of A is *irreducible* if its only subrepresentations are V and $\{0\}$. It is *indecomposable* if it cannot be written as a direct sum of two non-zero sub representations.

If V_1, V_2 are reps of A then $V_1 \oplus V_2$ is too via

$$a(v_1 + v_2) = av_1 + av_2$$

A **homomorphism** is a map $\phi : V_1 \to V_2$ such that $\phi(a,v) = a.\phi(v)$.

Theorem (Schur's Lemma). If V_1, V_2 are A reps and ϕ : $V_1 \rightarrow V_2$ is a non-zero hom then

• If V_1 is irreducible, then ϕ is injective

- If V_2 is irreducible, then ϕ is surjective
- If V_1, V_2 is irreducible, then ϕ is an isomorphism

moreover if $V_1 = V_2$ *and* ϕ *is an iso then it acts by a scalar.*

Lemma. *If A is commutative algebra then every finite dim rep of A is one dimensional*

A left (right) **ideal** of a k-algebra A is a subspace $I \le A$ that is closed under left (right) multiplication by A. We call a space that is both a left and right idea a **two sided ideal**.

An algebra A is *simple* if 0 and A are its only two sided ideals.

A representation of an algebra is called *faithful* if it is injective.

A rep of A is called *semi-simple* if it is the direct sum of irreducible representations.

Lemma. V_i finite dimensional irreps of A. If

$$W \le V = \sum_{i} V_i^n$$

then for some $r_i \leq n_i$

 $W \cong \bigoplus_i V_i^{r_i}$

and there is a morphism of representations $\phi : W \to V$ given on components $V_i^{r_i} \to V_i^{n_i}$ by multiplying on the right by X_i an $r_i \times n_i$ matrix with linearly independent rows.

Lemma. If $V = \bigoplus_{i \in I} V_i$ where each V_i is irreducible and $f : V \to U$ is surjective then there exists a subset $J \subseteq I$ such that f maps $\bigoplus_{i \in J} V_i$ isomorphically onto U.

Lemma. *V* irrep of finite dimension and $v_1, ..., v_n \in V$ linearly independent. Then for every other collection $w_1, ..., w_n \in V$ there exists an $a \in A$ such that for every *i*

 $av_i = w_i$

Theorem (Density Theorem). If (ρ, V) is a finite dimensional irrep of A then ρ is a surjection.

Given a rep of A, V then $V^* := Hom_k(V, k)$ is a right A module via

(f.a)(v) = f(a.v)

Lemma. If $A = \prod_i Mat_{d_i}(k)$ then the irreps of A are $V_1 = k^{d_1}, ..., V_r = k^{d_r}$, moreover any finite dimensional rep of A is isomorphic to $\oplus V_i^{n_i}$

Filtrations

A finite *filtration* of V is a sequence of subreps $0 = V_0 < V_1 < \cdots < V_n = V$

Lemma. Every finite dimensional rep V of A admits a finite filtration such that V_i/V_{i-1} is irreducible for all i.

Such a filtration is called a *composition series*.

Theorem. Any two composition series of V are the same length and the quotients are isomorphic (up to reordering).

The collection of irreps $\{V_i/V_{i-1} : i = 1, ..., n\}$ is called the **Jordan-Holder series** of V.

Theorem (Krull-Schmidt). *Any finite dimensional rep V of A can be uniqueqly decomposed into a direct sum of inde-composable subreps*

Lemma. If W is a finite dimensional indecomposable rep of A then a hom $W \rightarrow W$ is either nilpotent or an isomorphism. Moreover the sum of nilpotent maps is nilpotent.

If $\theta : W \to W$ is a homomorphism of A reps then for $\lambda \in k$ we have $W_{\lambda} = \{w \in W : (\theta - \lambda)^n w = 0 \text{ some } n\}$, this is the *generalised eigenspace*.

Finite Dimensional

Let A be a finite dimensional k algebra. The *radical* of A is the set

$$Rad(A) = \{a \in A : aV_i == \forall V_i \text{ irreducible reps}\}$$

Lemma. *Rad*(*A*) *is a two sided ideal.*

Lemma. Let I be a nilpotent two sided ideal, then it is contained in the radical. Moreover the radical is the largest nilpotent two sided ideal.

Theorem. A has only finitely many irreps up to isomorphism. Moreover

$$A/Rad(A) \cong \prod_{i} End_k(V_i)$$

where V_i are the irreps of A.

Lemma. For the irreps of A, V_i we have that

$$\sum_{i} (\dim V_i)^2 \le \dim A$$

A finite dimensional algebra is *semisimple* if its radical is zero.

Theorem. For a finite dimensional algebra A the following are equivilent

- A is semisimple
- $\sum_i (\dim V_i)^2 = \dim A$
- $A \cong \prod_i Mat_{d_i}(k)$
- Every finite dim rep of A is completely reducible
- Every subrep of a finite dim rep of A admits a complementary subrep.
- A is completely reducible as an A module.

Characters

Characters are defined in the same way.

Lemma. *Characters of irreps of A are linearly independent.*

Lemma. If A is finite dimensional semisimple algebra then the characters form a basis of $(A/[A, A])^*$

Weyl Algebra

The **Weyl algebra** is

 $k[x, y]/\langle yx - xy - 1 \rangle$

Theorem. The Weyl algebra has a basis $\{x^i y^j : i, j \ge 0\}$

If A, B are k-algebras then we can make the tensor

 $A \otimes_{\iota} B$

with the multiplication

 $(a \otimes b)(\alpha \otimes \beta) = a\alpha \otimes b\beta$

If V is a rep of A and W is a rep of B then $V \otimes_k W$ is a rep of $A \otimes_k B$ via the action

 $(a \otimes b)(v \otimes w) = av \otimes bw$

Lemma. V irrep of A, W irrep of B then $V \otimes W$ is irrep of $A \otimes B$. Moreover every irrep of $A \otimes B$ is of this form.

Theorem. A, B subalgebras of End(E), where E is a finite dimensional k-vector space, such that A is semisimple and $B = End_A(E)$. Then

- $A = End_B(E)$
- B is semi-simple
- As a rep of $A \otimes B E$ decomposes as a direct sum over the tensor of irreps of A and B

 $E = \bigoplus_{i} V_i \otimes W_i$

for some ordering on the irreps of A and B.

Lecture 34, enveloping algebra

Structure of Finite Dimensional Algebras

Let A be a k-algebra and $I \leq A$ a nilpotent two sided ideal. Recall that an element of an algebra is called *idempotent* when $e^2 = e$.

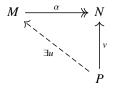
Lemma. Let $e \in A/I$ be idempotent then there exists idempotent $f \in A$ such that $\pi(f) = e$, moreover this lift is unique up to conjagacy by an element of 1 + I.

A complete system of orthogonal idempotents in a kalgebra A is a collection of idempotents $e_1, ..., e_m \in A$ such that $e_i e_i = 0$ for each $i \neq j$ and $e_1 + \cdots + e_m = 1$.

Lemma. If $e_1, ..., e_m$ is a complete system of idempotents of *A*/*I* then there exists a complete system of idempotents in A, **Tensor Product** $f_1, ..., f_m$ such that $\pi(f_i) = e_i$.

> **Theorem.** If P, M, N are representations of A (Left A modules) then the following are equivilent

• If $\alpha : M \to N$ is a surjection and $P \to N$ then there exists $a u : P \to M$ such that $\alpha \circ u = v$.



- If $\alpha : M \to N$ is a surjection then there exists a $u: P \rightarrow M$ such that $\alpha \circ u = id$ i.e. α splits.
- There exists an A module Q such that $P \oplus Q$ is a free A module
- The functor $\operatorname{Hom}_A(P, -)$ is exact

A module satisfying one of the above conditions is called projective.

Theorem. A finite dimensional with irreps $M_1, ..., M_n$ we have

- For each i = 1, ..., n there exists a unique indecomposable finitely generated projective A module P_i such that dim Hom_A(P_i, M_i) = δ_{ii}
- $A \cong \bigoplus_i P_i^{\dim M_i}$

• Any indecomposable finitely generated projective A module is isomorphic to P_i for some i

The P_i is called the **projective cover** of M_i .

Lemma. If N is a finite dimensional rep of A then dim Hom_A(P_i , N) = [N : M_i] which is the multiplicity of the occurence of M_i in the Jordan-Holder series.

If A has irreps M_i with projective covers P_i then the matrix

 $C_{ii} := \dim \operatorname{Hom}_A(P_i, P_i) = [P_i : M_i]$

is called the *Cartan matrix* of A.