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Representations of Finite Groups

A representation of a finite group G on a C vector space
V is a group homomorphism

G → Aut(V)

The dimension of V is known as the degree of the represen-
tation.

A morphism of representations, (ρ1,V1) and (ρ2,V2), is
a linear function ϕ : V1 → V2 such that

∀g ∈ G ρ2(g)ϕ = ϕρ1(g)

A subrepresentation of (ρ,V) is a vector subspace W ≤
V such that ∀g ∈ G ρ(g)(W) ⊆ W

Recall that for W ≤ V a projection of V → W is a linear
map that restricted to W is the identity.

Lemma. There is a bijection

{projections V → W} ↔ { compliments of W in V}

sending a projection to its kernel and a decomposition to the
projection.

Lemma. If ρ : G → GL(V) is a rep and W ≤ V is a subrep
then there exists a complimentary subrep W ′ ≤ V such that
V = W ⊕W ′.

Note that there is always a complimentary subspace but
it might not be stable under the G action.

A representation is irreducible if it is non-trivial and has
no non-trivial strict subreps.

Theorem. Every representation decomposes into a direct
sum of irreducible reps.

Note that this is not true in general if we consider rep-
resentations on non-C vector spaces, or infinite groups etc.
This property is known as complete reducibility.

Theorem (Schurs Lemma). If (ρ1,V1) and (ρ2,V2) are ir-
reps and f ∈ HomG(V1,V2) then f = λI for some λ ∈ C. In
particular f is either an iso or the zero map.

Making New Reps
Let (ρ,V), (ρ′,V ′) be two representaitons of G.

Direct Sum
τ : G → GL(V ⊕ V ′)

τ(g)(v + v′) = ρ(g)(v) + ρ′(g)(v′)

Tensor If V and V’ have a basis {vi}, {v′i} respectively then
V ⊗ V ′ has a basis {vi ⊗ v′j} and we get a new representation
via

τ : G → GL(V ⊗ V ′)

τ(g)(v ⊗ v′) = ρ(g)(v) ⊗ ρ′(g)(v′)

Symmetric and Alternating Square A subcase is where
we want to only use the first representation on V ⊗ V . If we
define

θ : V ⊗ V → V ⊗ V

v ⊗ w 7→ w ⊗ v

Then we can write

V ⊗ V = S ym2(V) ⊕ Λ2(V)

where
S ym2(V) = {x ∈ V ⊗ V : θ(x) = x}

Λ2(V) = {x ∈ V ⊗ V : θ(x) = −x}

These spaces have respective bases {ei ⊗ e j + e j ⊗ ei} and
{ei ⊗ e j − e j ⊗ ei}. Then these are both subrepresentations on
V ⊗ V .

Dual Rep Given a vector space we can take its linear dual
V∗ = HomC(V,C).

π : G → GL(V∗)

π(g)( f ) = g. f

g. f (v) = f (ρg−1 (v))

Hom Rep
π : G → GL(HomC(V,V ′))

π(g)( f )(v) = ρ′g( f (ρg−1 (v)))

Characters
The character of a rep (ρ,V) is the map

χρ = χV : G → C

χ(g) = Tr(ρ(g))

or equally the sum of eigenvalues with multiplicity.

Lemma. The character has the following properties

• χ(1) = dimV = degρ

• χ(g−1) = χ(g) the complex conjugate

• χ(hgh−1) = χ(g), it is a class function

• χρ⊕ρ′ = χρ + χρ′

• χρ⊗ρ′ = χρ · χρ′

• χρ∗ = χρ

• χHom(V,V ′) = χV · χV ′

• χS 2V (g) = 1
2 [χV (g)2 + χV (g2)]

• χ∧2V (g) = 1
2 [χV (g)2 − χV (g2)]

Lemma.
HomC(V,V ′) � V∗ ⊗ V ′

as representations.

A function G → C is a class function if ∀g, h ∈ G we
have f (hgh−1) = f , it is constant on conjugacy classes.

We define the following inner product on classfunction
ϕ, ψ :: G → C

⟨ϕ, ψ⟩ =
1
|G|

∑
g∈G

ϕ(g)ψ(g−1)

Theorem.
⟨χ, χ⟩ = 1

iff χ is an irreducible character.



Lemma. If χ, χ′ are two non-isomorphic irreducible char-
acters then

⟨χ, χ′⟩ = 0

Lemma. If (ρ,V) is a G rep and VG are the fixed points then

dim VG =
1
|G|

∑
g∈G

χρ(g)

Theorem. V a rep of G and Wi an irrep of G. The number
of Wi’s contained in V as subrepresentations is then

⟨χV , χWi⟩

Theorem. Two representatinosn have the same character iff
they are isomorphic.

Counting Irreps
Theorem. The number of irreducible representatinos of G
is the same as the number of conjugacy classes.

If Wi are all the irreps of G and they have respective di-
mensions ni then

Lemma. ∑
i

n2
i = |G|

and ∑
i

niχWi (g) = 0 ∀g , 1

Lemma. If g ∈ G we denote c(g) ..= size of the conjugacy
class of g. Then ∑

i

χi(g)χi(g) =
|G|
c(g)

and for h not in the conjugacy class of g∑
i

χi(h)χi(g) = 0

Lemma. The degrees of irreps of G divide |G|/|cent(G)|

Theorem. H ≤ G normal subgroup and (ρ,V) an irrep of
G then either

• ρ|H is isotypic (has only one irred component)

• OR; ∃H ≤ K < G and an irrep of K, σ, such that
ρ = IndG

K σ

Lemma. The degrees of irreps of G divide |G|/|A| where A
is any abelian normal subgroup of G.

Canonical Decomposition
Ignoring

Regular Rep
The regular representation of G is the C vector space
span{eg : g ∈ G} with the action that h.eg = ehg which
gets extended linearly to the rest of the vector space. This
has the character

rG(g) =

|G|, g = 1
0, else

Moreover it decomposes into

RG = ⊕iW
dim Wi
i

where Wi runs over all the irreps of G.



Special Cases

Abelian Group
In an abelian group each conjugacy class has exactly one
element.

Theorem. G is abelian iff all irreducible reps have degree
one.

Lemma. If A is an abelian subgroup of G then every irre-
ducible rep of G has degree ≤ |G|

|A|

Products of Groups
Let G1,G2 be two groups with respective representations
(ρ1,V1), (ρ2,V2). We get a representation

ρ1 ⊗ ρ2 : G1 ×G2 → GL(V1 ⊗ V2)

(g1, g2) 7→ ρ1(g1) ⊗ ρ2(g2)

This has character the product of the two other characters as
before.

Theorem. • If ρi are both irreps then ρ1 ⊗ ρ2 is irrep

• Every irrep of G1×G2 is iso to something of this form.

Semi-Direct Product
Let G = H ⋉ A where A is normal and abelian. All iirps
of A are one dimensional, hence they form a group namely
X = Hom(A,C∗). There is a G action on X via

g.χ(a) = χ(g−1ag)

Then for each character we get a subgroup of H,

Hi
..= {h ∈ H : h.χi = χi}

Note that if χi is in the same H orbit as χ j then Hi = H j. Let
Gi = Hi ⋉ A the characters of A extend to characters of Gi

by just ignoring the Hi, χi(ha) = χi(a). Irreps of Hi extend
in the same way to irreps of Gi. Then if ρ is such an irrep of
Gi

• IndG
Gi

(χi ⊗ ρ) is irreducible

• Every irrep of G arrises in this way.

Solvable and Sylow Groups
Recall that a solvable group G has a finite derived series i.e.

{1} ≤ G0 ≤ · · · ≤ Gn = G

such that Gi−1 ≤ Gi normal and Gi/Gi−1 is abelian.
A supersolvable group moreover has that Gi/Gi−1 is

cyclic. Finally a nilpotent group is one that is solvable and
Gi/Gi−1 ≤ Cent(Gi/Gi−1).

Lemma. Nilpotent =⇒ Supersolvable =⇒ Solvable

A p-group is a group whose order is a power of p, for p
prime.

Theorem. Every p-group is nilpotent

Lemma. If a p-group G acts on a finite set X then

|X| ≡ |XG | (mod p)

Lemma. Let V be a non-zero k-vector space, where charac-
teristic of k is p. Let (ρ,V) be a rep of G. If G is a p-group
then there exists a v ∈ V − {0} that is fixed by ρ(g) for all
g ∈ G i.e.

∀g ∈ G ρ(g)v = v

Theorem. The only irreducible rep of a p-group in charac-
teristic p is the trivial rep.

Recall that for a group G a Sylow-p subgroup is a maxi-
mal p-subgroup.

Theorem. If p is prime and |G| = mpn for some m coprime
to p. Then

• There exists a Sylow p-subgroup (of order n)

• All Sylow-p subgroups are conjugate i.e. For any two
Sylow-p subgroups P, Q there exists a g ∈ G such that

gPg−1 = Q

• Each p-subgroup of G is contained in a Sylow-p sub-
group

Lemma. G non-abelian and supersolvable then there is a
normal abelian subgroup that is not contained in the center
of G.

Lemma. Every irreducible representation of a supersolv-
able group is induced by a degree one represntation of a
subgroup.



Induction & Restriction

Let H ≤ G a subgroup and R = G/H a collection of rep-
resentatives of cosets. Let W be a C[H] module. We define
the induction of W to G to be the representation

IndG
H W = C[G] ⊗C[H] W

with C[G] action

g.(x ⊗ w) = (gx) ⊗ w

which has the following properties

• dim IndG
H W = [G : H] dim W

• χIndG
H W (g) = 1

|H|
∑

s∈G,s−1gs∈H χW (s−1gs)

• IndG
H � HomH(C[G],W) as representations.

• HomH(W,ResG
H E) � HomG(IndG

H W, E)

• V ⊗C IndG
H W � IndG

H(ResG
H V ⊗C W)

• If H ≤ K ≤ G then IndG
K IndK

H W � IndG
H W

Induction is a functor: If f : H → C is a class function then
IndG

H f : G → C definied by

IndG
H f (g) =

1
|H|

∑
s∈G,s−1gs∈H

f (s−1gs)

is a calss function. Moreover if f is a character of W then

IndG
H χW = χIndG

H W

Lemma.
dim HomH(V1,V2) = ⟨χV1 , χV2⟩

Lemma.
⟨ψ,Res ϕ⟩H = ⟨IndG

H ψ, ϕ⟩G

Lemma. W irrep of H, E irrep of G. Then the number of
times that W appears in ResG

H E is the number of times E
occurs in IndG

H W

Ignoring a lot of lecture 10 and 11

Restriction
Let H ≤ G and K ≤ G be two subgroups. We are going to in-
duce one of the subgroups and restrict down to the other. Let
(ρ,W) be a H rep. Consider the double cosets K \G/H ..=

{KgH : g ∈ G} where KgH = {kgh : k ∈ K, h ∈ H}. For
s ∈ G we define Hs

..= sHs−1 ∩ K and ρs : Hs → GL(W)
sending x 7→ ρ(s−1xs).

Theorem.

ResG
K IndG

H(W) =
⊕

s∈K\G/H

IndK
Hs

(ρs)

s some representatives

Mackey’s Irreducibility
Let H ≤ G and s ∈ G, we define Hs

..= sHs−1 ∩ H. If
ρ : H → GL(W) is a rep then so is ResH

Hs
ρ and

ρs : Hs → GL(W)

x 7→ ρ(s−1xs)

Theorem. IndG
H W is irreducible iff W is irreducible and

∀s ∈ G − H
⟨ρs,ResH

Hs
⟩ = 0

Lemma. If H is normal in G then IndG
H W is irreducible iff

W is irreducible and ∀s ∈ G − H ρ � ρs



Group Algebra

We now work with G a finite group and K a commutative
ring of characteristic zero. We make K[G] ..= spanK{g :
g ∈ G} � K |G| the formal span of G as a K module into a ring
and therefore a K algebra by defining multiplication as∑

g∈G

agg


∑

h∈G

bhh

 = ∑
g,h∈G

agbhgh

This is called the group algebra
If k is a field, V is a k vector space and ρ : G → GL(V)

is a rep then V can be made into a left k[G] module via∑
g∈G

agg

 .v =∑
g∈G

agρ(g)(v)

If V is a left k[G] module then the following is a rep

g 7→ (v 7→ g.v)

Theorem. In characteristic 0 we have complete reducibil-
ity. Every k[G] module decomposes into the direct sum of
irreducible submodules.

Decomp of C [G]
Consider the irreps of G, (ρi,Wi).

Theorem.
C[G] �

∏
i

Mdim Wi (C)

g 7→ (ρ1(g), ..., ρm(g))

extended linearly to all of C[G]

Lemma. Let (u1, ..., um) ∈
∏

i End(Wi) and u =
∑

g∈G u(g)g
its preimage under the above iso. Then

u(g) =
1
|G|

∑
i

dim(Wi)Tr(ρi(g−1)ui)

Center
If c is a conjugacy class of G then we denote zc =

∑
g∈c g.

Lemma. {zc}c forms a basis of the center of C[G].

Theorem. From the decomposition of C[G] we have ho-
momorphisms (that when collected give an isomorphism)
ρi : C[G] → End(Wi) = Matdim Wi (C) which restricts to
the center ωi = ρi|Cent(C[G]) for i = 1, ..., k.

(ωi)i : cent(C[G])→ Ck

Is an isomorphism. Explicitly

ωi

(∑
u(g)g

)
=

1
dim Wi

∑
g∈G

u(g)χi(g)

Ignoring algebraic integer stuff... Lecture 15



Symmetric Groups

Conjugacy classes of S n are in bijection with partitions
of n.

Young Subgroups
Fix a tableau tλ of shape λ. Then the young subgroups asso-
ciated are

P = Ptλ = {g ∈ S n : g preserves each row}

Q = Qtλ = {g ∈ S n : g preserves each column}

Note that S n acts on the tableux by permuting the numbers.
By preseve the rows / columns we are saying the same num-
bers are in there, we dont care about the order (otherwise
both groups would be trivial).

Lemma. If λ = λ1+· · ·+λm with transpose λ′ = µ1+· · ·+µm′

then the young subgroups are

P � S λ1 × · · · × S λm

Q � S µ1 × · · · × S µm′

There are three distinguished elements of C[S n] associ-
ated to the young subgroups

aλ =
∑
g∈P

eg, bλ =
∑
g∈Q

sgn(g)eg, cλ = aλbλ

Classification of Irreps
Theorem. • Some scaler multiple of cλ is idempotent

i.e.
∃nλ ∈ C, c2

λ = nλcλ

• For every λ, C[S n]cλ is an irreducible representation
of S n

• Every irreducible representation of S n is given by
C[S n]cλ for some λ

We will need several lemmas to prove this result which
we now develop.

First notice that P ∩ Q = {1}, thus ∀g ∈ S n we can write
it in at most one way as g = pq where p ∈ P, q ∈ Q (it

might be not expressable in this form). Applying these to
our distinguished element

cλ =
∑

pq∈PQ

sgn(q)epq

Ignoring lectures 22, 23; have the lemmas for the proof etc

Applications
Lemma. For any λ we have that c2

λ = nλcλ

nλ =
n!

dim(C[S n]cλ)

5.3.1 Frobenius Formula

We set up some notation. Let Vλ = C[S n]cλ and χλ the asso-
ciated character. We can write a partition multiplicatively

λ = λ1 + · · · + λm ⇝ λ1 · · · λm

which if we have repeated entries we can collpse to be some-
thing of the form

λi = nin (n − 1)in−1 · · · 1i1

so to a tuple of non-negative integers i = (i1, · · · , in) we can
associate a partition λi above.

Fix a k ≥ the number of rows in λi and let

p j(x) = x j
1 + · · · x

j
k

and
∆(x) =

∏
1≤i< j≤k

(xi − x j)

Finally if f (x) = f (x1, ..., xk) is a formal power series
and (ℓ1, ..., ℓk) ∈ Zk

≥0 then we denote

[ f (x)](ℓ1,...,ℓk) = the coefficient of xℓ1
1 · · · x

ℓk
k in f

Theorem.

χλ(Ci) =

∆(x)
n∏

j=1

p j(x)i j


(ℓ1,...,ℓk)

As a corrolory we know that

dimVλ =
n!

ℓ1! · · · ℓk!

∏
i< j

(ℓi − ℓ j) =
n!∏

hook lengths in λ

and this is further independent of our choice of k.

Lemma. The dimension of C[S n]cλ is equal to the number
of tableux on λ such that the rows and columns are increas-
ing

Slide 153 remarks, Schur-Weyl duality

Alternating Groups
An ≤ S n is the commutator subgroup of S n, it has index
two. For a general subgroup of index two H ≤ G we have
the permutation representation of G ⟳ G/H = {1, r} which
decomposes into a direct sum Ctriv ⊕ Cnon−triv

Lemma. Let V be an irrep of G, and let W = ResG
H V where

H ≤ G an index two subgroup. Let V ′ = V ⊗Cnon−triv for the
permutation representation. Then one of the following holds

• V � V ′: Then W is irreducible and IndG
H W � V ⊕ V ′

• V � V ′: Then W � W ′ ⊕W ′′ for two non-isomorphic
irreps W ′,W ′′. Moreover

V � IndG
H W ′ = IndG

H W ′′

158 - 161



General Representations of Algebras

We set k to be an algebraically closed field. A k alge-
bra is a k vector space with a bilinear multiplication. A
left A-module is a k-vector space V with a homomorphism
ρ : A → Endk(V), a linear map preserving multiplication
and unit.

A submodule is a subspace U ≤ V such that ρ(a)U ≤ U
for all a ∈ A.

A non-zero rep V of A is irreducible if its only sub-
representations are V and {0}. It is indecomposable if it can-
not be written as a direct sum of two non-zero sub represen-
tations.

If V1,V2 are reps of A then V1 ⊕ V2 is too via

a(v1 + v2) = av1 + av2

A homomorphism is a map ϕ : V1 → V2 such that
ϕ(a.v) = a.ϕ(v).

Theorem (Schur’s Lemma). If V1,V2 are A reps and ϕ :
V1 → V2 is a non-zero hom then

• If V1 is irreducible, then ϕ is injective

• If V2 is irreducible, then ϕ is surjevtive

• If V1,V2 is irreducible, then ϕ is an isomorphism

moreover if V1 = V2 and ϕ is an iso then it acts by a scalar.

Lemma. If A is commutative algebra then every finite dim
rep of A is one dimensional

A left (right) ideal of a k-algebra A is a subspace I ≤ A
that is closed under left (right) multiplication by A. We call
a space that is both a left and right idea a two sided ideal.

An algebra A is simple if 0 and A are its only two sided
ideals.

A representation of an algebra is called faithful if it is
injective.

A rep of A is called semi-simple if it is the direct sum of
irreducible representations.

Lemma. Vi finite dimensional irreps of A. If

W ≤ V =
∑

i

Vni
i

then for some ri ≤ ni

W � ⊕iV
ri
i

and there is a morphism of representations ϕ : W → V given
on components Vri

i → Vni
i by multiplying on the right by Xi

an ri × ni matrix with linearly independent rows.

Lemma. If V = ⊕i∈IVi where each Vi is irreducible and
f : V → U is surjective then there exists a subset J ⊆ I such
that f maps ⊕i∈JVi isomorphically onto U.

Lemma. V irrep of finite dimension and v1, ..., vn ∈ V
linearly independent. Then for every other collection
w1, ...,wn ∈ V there exists an a ∈ A such that for every i

avi = wi

Theorem (Density Theorem). If (ρ,V) is a finite dimen-
sional irrep of A then ρ is a surjection.

Given a rep of A, V then V∗ ..= Homk(V, k) is a right
A module via

( f .a)(v) = f (a.v)

Lemma. If A =
∏

i Matdi (k) then the irreps of A are V1 =

kd1 , ...,Vr = kdr , moreover any finite dimensional rep of A is
isomorphic to ⊕Vni

i

Filtrations
A finite filtration of V is a sequence of subreps 0 = V0 <
V1 < · · · < Vn = V

Lemma. Every finite dimensional rep V of A admits a finite
filtration such that Vi/Vi−1 is irreducible for all i.

Such a filtration is called a composition series.

Theorem. Any two composition series of V are the same
length and the quotients are isomorphic (up to reordering).

The collection of irreps {Vi/Vi−1 : i = 1, ..., n} is called
the Jordan-Holder series of V.

Theorem (Krull-Schmidt). Any finite dimensional rep V of
A can be uniqueqly decomposed into a direct sum of inde-
composable subreps

Lemma. If W is a finite dimensional indecomposable rep of
A then a hom W → W is either nilpotent or an isomorphism.
Moreover the sum of nilpotent maps is nilpotent.

If θ : W → W is a homomorphism of A reps then for
λ ∈ k we have Wλ = {w ∈ W : (θ − λ)nw = 0 some n}, this is
the generalised eigenspace.

Finite Dimensional
Let A be a finite dimensional k algebra. The radical of A is
the set

Rad(A) = {a ∈ A : aVi == ∀Vi irreducible reps}

Lemma. Rad(A) is a two sided ideal.

Lemma. Let I be a nilpotent two sided ideal, then it is con-
tained in the radical. Moreover the radical is the largest
nilpotent two sided ideal.

Theorem. A has only finitely many irreps up to isomor-
phism. Moreover

A/Rad(A) �
∏

i

Endk(Vi)

where Vi are the irreps of A.

Lemma. For the irreps of A, Vi we have that∑
i

(dim Vi)2 ≤ dim A

A finite dimensional algebra is semisimple if its radical
is zero.

Theorem. For a finite dimensional algebra A the following
are equivilent

• A is semisimple

•
∑

i(dim Vi)2 = dim A

• A �
∏

i Matdi (k)

• Every finite dim rep of A is completely reducible

• Every subrep of a finite dim rep of A admits a comple-
mentary subrep.

• A is completely reducible as an A module.



Characters
Characters are defined in the same way.

Lemma. Characters of irreps of A are linearly independent.

Lemma. If A is finite dimensional semisimple algebra then
the characters form a basis of (A/[A, A])∗

Weyl Algebra
The Weyl algebra is

k[x, y]/⟨yx − xy − 1⟩

Theorem. The Weyl algebra has a basis {xiy j : i, j ≥ 0}

Tensor Product
If A, B are k-algebras then we can make the tensor

A ⊗k B

with the multiplication

(a ⊗ b)(α ⊗ β) = aα ⊗ bβ

If V is a rep of A and W is a rep of B then V ⊗k W is a rep
of A ⊗k B via the action

(a ⊗ b)(v ⊗ w) = av ⊗ bw

Lemma. V irrep of A, W irrep of B then V ⊗ W is irrep of
A ⊗ B. Moreover every irrep of A ⊗ B is of this form.

Theorem. A, B subalgebras of End(E), where E is a finite
dimensional k-vector space, such that A is semisimple and
B = EndA(E). Then

• A = EndB(E)

• B is semi-simple

• As a rep of A ⊗ B E decomposes as a direct sum over
the tensor of irreps of A and B

E =
⊕

i

Vi ⊗Wi

for some ordering on the irreps of A and B.

Lecture 34, enveloping algebra

Structure of Finite Dimensional
Algebras

Let A be a k-algebra and I ≤ A a nilpotent two sided ideal.
Recall that an element of an algebra is called idempotent
when e2 = e.

Lemma. Let e ∈ A/I be idempotent then there exists idem-
potent f ∈ A such that π( f ) = e, moreover this lift is unique
up to conjagacy by an element of 1 + I.

A complete system of orthogonal idempotents in a k-
algebra A is a collection of idempotents e1, ..., em ∈ A such
that eie j = 0 for each i , j and e1 + · · · + em = 1.

Lemma. If e1, ..., em is a complete system of idempotents of
A/I then there exists a complete system of idempotents in A,
f1, ..., fm such that π( fi) = ei.

Theorem. If P,M,N are representaitons of A (Left A mod-
ules) then the following are equivilent

• If α : M → N is a surjection and P → N then there
exists a u : P→ M such that α ◦ u = v.

M N

P

α

v
∃u

• If α : M → N is a surjection then there exists a
u : P→ M such that α ◦ u = id i.e. α splits.

• There exists an A module Q such that P ⊕ Q is a free
A module

• The functor HomA(P,−) is exact

A module satisfying one of the above conditions is called
projective.

Theorem. A finite dimensional with irreps M1, ...,Mn we
have

• For each i = 1, ..., n there exists a unique indecom-
posable finitely generated projective A module Pi such
that dim HomA(Pi,M j) = δi j

• A � ⊕iP
dim Mi
i

• Any indecomposable finitely generated projective A
module is isomorphic to Pi for some i

The Pi is called the projective cover of Mi.

Lemma. If N is a finite dimensional rep of A then
dim HomA(Pi,N) = [N : Mi] which is the multiplicity of
the occurence of Mi in the Jordan-Holder series.

If A has irreps Mi with projective covers Pi then the ma-
trix

Ci j
..= dim HomA(Pi, P j) = [P j : Mi]

is called the Cartan matrix of A.
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